Mark Scheme 4730 June 2006

1	(i)		M1		For using $I = \Delta$ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using $I = \Delta$ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		
		Speed is 43.3 ms ⁻¹	A1	3	
2			M1		For applying Newton's 2 nd Law.
		$2v(dv/dx) = -(2v + 3v^2)$	M1 A1		For using $a = v(dv/dx)$.
			M1		For separating variables and attempting to integrate.
		$2/3\ln(2 + 3v) = -x$ (+C)	A1ft		ft absence of minus sign,
		[2/3ln14 = C]	M1		For using $v(0) = 4$.
		$[2/3\ln 2 = -x + 2/3\ln 14]$	M1		For attempting to solve v(x) = 0 for x.
		Comes to rest after travelling 1.30m	A1	8	AG

3 (i)	i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		
		Magnitude is 240N	A1		AG
			M1		For taking moments about A for the rod AB.
		0.7x240 = 0.35x200 + 1.05T	A1		
		Tension is 93.3N	A1	6	
O (i)	OR i)		M1		For taking moments about
		$0.7R_B = 70 + 1.05T$ and $0.7R_C = 126 +$	A1		A for AB and AC.
		1.05T			
			M1		For eliminating T or for adding the equations, and then using $R_B + R_C = 560$.
		$0.7(560 - R_B) - 0.7R_B = 126 -$ 70 or $0.7x560 = 70 + 126 +$	A1		For a correct equation in R _B only or T only
		2.1T			
		Magnitude is 240N	A1		AG
		Tension is 93.3N	A1	6	
(ii	ii)	Horizontal component is 93.3 N to the left	B1ft		
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	•

4	(i)		M1		For using Newton's 2 nd Law
			A1		perp. to string with $a = L\ddot{\theta}$.
		L(m) $\ddot{\theta}$ = -(m)gsin θ or (m) \ddot{s} = -	ΑI		
		(m)gsin(s/L) $\ddot{\theta} \approx -k\theta$ or $\ddot{s} = -ks$ [and motion is therefore approx. simple harmonic]	B1		
		•	M1		For using T = $2\pi/n$ and k = w^2 or T = $2\pi\sqrt{L/g}$ for
		Period is 3.14s.	A1	5	simple pendulum. AG
	(ii)		M1		For using $\dot{\theta}^2 = n^2(\theta_0^2 - \theta^2)$ or the
					principle of conservation of energy
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2)$ or $\frac{1}{2}$ m(2.45 $\dot{\theta}$) ² = 2.45mg(cos0.06 –	A1		5,
		cos0.1)		_	(0.1700)
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	(0.1599 from energy method)
	OR	(in the case for which (iii) is attempted before (ii))			
	(ii)	$[\dot{\theta} = -0.2\sin 2t]$	M1		For using $\dot{\theta} = d(A\cos nt)/dt$
		$\dot{\theta}$ = -0.2sin(2x0.464)	A1ft		, ,
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	
	(iii)		M1		For using θ = Acos nt or Asin(π /2 – nt) or for using
		0.06 = 0.1cos2t or 0.1sin(π /2 – 2t) or 2T = π /2 –	A1ft		θ = Asin nt and T = $t_{0.1} - t_{0.06}$ ft angular displacement of 0.04 instead of 0.06
		or $2T = \pi/2 - \sin^{-1}0.6$			
		Time taken is 0.464s	A1	3	

E		M1		Σ mv conserved in i
5		IVI I		direction.
	$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1		direction.
	2x1200000	M1		For using NEL
	Faul HO - 4			
	For LHS of equation below	A1		Complete and the total
	$0.5(12\cos 60^{\circ} + 8) = b - a$	A1		Complete equation with signs of a and b consistent with previous equation.
		M1		For eliminating a or b.
	Speed of B is 0.4ms ⁻¹ in i direction	A1		J
	a = -6.6	A1		
	Component of A's velocity in j direction is	B1		May be shown on diagram or implied in subsequent
	12sin60°			work.
	Speed of A is 12.3ms ⁻¹	B1ft		
		M1		For using
				$\theta = \tan^{-1}(\mathbf{j}\operatorname{comp}/\pm \mathbf{i}\operatorname{comp})$
	Direction is at 122.4° to the i	A1ft	1	Accept $\theta = 57.6^{\circ}$ with
	direction		2	heta correctly identified.
6 (i)	T = 1470x/30	B1		
	[49x = 70x9.8]	M1		For using T = mg
	x = 14	A1		
	Distance fallen is 44m	A1ft	4	
(ii)	PE loss = 70g(30 + 14)	B1ft		
	EE gain = $1470 \times 14^2 / (2 \times 30)$	B1ft		F-11
	$[\frac{1}{2} 70v^2 = 30184 - 4802]$	M1		For a linear equation with terms representing KE, PE and EE changes.
	Speed is 26.9ms ⁻¹	A1	4	AG
OR	-			
(ii)	$[0.5 \text{ v}^2 = 14\text{g} - 68.6 + 30\text{g}]$	M1		For using Newton's 2^{nd} law $(vdv/dx = g - 0.7x)$, integrating $(0.5 v^2 = gx - 0.35x^2 + k)$, using $v(0)^2 = 60g \rightarrow k = 30g$, and substituting $x = 14$.
	For 14g + 30g	B1ft		
	For ∓ 68.6	B1ft		Accept in unsimplified form.
	Speed is 26.9ms ⁻¹	A1	4	AG
(iii)	PE loss = $70g(30 + x)$	B1ft		
	EE gain = $1470x^2/(2x30)$	B1ft		For units a BE I
	$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE
				gain to obtain a 3 term
	Extension is 46.2m	A1	4	quadratic equation.
OR	EAGIGIOII IS TULLIII			
(iii)		M1		For identifying SHM with n ² =
				1470/(70x30)
		M1		For using v _{max} = An
	$A = 26.9 / \sqrt{0.7}$	A1		
	Extension is 46.2m	A1	4	
<u></u>				

7	(i)	$\frac{1}{2} 0.3 v^2 + \frac{1}{2} 0.4 v^2$	B1		
		± 0.3 g $(0.6$ sin $\theta)$	B1		
		$\pm 0.49(0.6\theta)$	B1		
		$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of conservation of energy.
		$v^2 = 6.72 \theta - 5.04 \sin \theta$	A1	5	AG
	(ii)		M1		For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$
		$0.3(v^2/0.6) = 0.3gsin\theta - R$	A1		
		$[\frac{1}{2}(6.72\theta - 5.04\sin\theta) =$	M1		For substituting for v ² .
		$0.3 g sin \theta$ - R]			
		Magnitude is $(5.46\sin\theta - 3.36\theta)$ N	A1		AG
		$[5.46\cos\theta - 3.36 = 0]$	M1		For using $dR/d\theta = 0$
		Value of θ is 0.908	A1	6	Ü
	(iii)	$[T - 0.3g\cos\theta = 0.3a]$	M1		For applying Newton's 2 nd Law tangentially to P
		[0.4g - T = 0.4a]	M1		For applying Newton's 2 nd Law to Q
					[If $0.4g - 0.3g\cos\theta = 0.3a$ is seen, assume this
					derives from
					$T - 0.3g\cos\theta = 0.3a \dots$
					M1
					and T = 0.4g M0]
		Component is $5.6 - 4.2\cos\theta$	A1	3	
	OR				
	(iii)	$0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$	B2		
		Component is $5.6 - 4.2\cos\theta$	B1	3	
	OR				
	(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$	M1		For differentiating v^2 (from (i)) w.r.t. θ
		$2(0.6a) = 6.72 - 5.04\cos\theta$	M1		For using $v(dv/d\theta) = ar$
		Component is $5.6 - 4.2\cos\theta$	A1	3	