Mark Scheme 4733 June 2006

1	$\begin{aligned} & \mu=\frac{3}{37} \int_{3}^{4} x^{3} d x=\frac{3}{37}\left[\frac{x^{4}}{4}\right]_{3}^{4}\left[=3 \frac{81}{148}\right] \\ & \frac{3}{37} \int_{3}^{4} x^{4} d x=\frac{3}{37}\left[\frac{x^{5}}{5}\right]_{3}^{4} \\ & =12 \frac{123}{185} \text { or } 12.665 \\ & \sigma^{2}=12 \frac{123}{185}-3 \frac{81}{148}=\mathbf{0 . 0 8 1 5} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 6 \\ & \\ & \end{array}$	```Integrate \(\mathrm{xf}(x)\), limits 3 \& \(4 \quad\) [can be implied] [\(\frac{525}{148}\) or 3.547] Attempt to integrate \(x^{2} \mathrm{f}(x)\), limits 3 \& 4 Correct indefinite integral, any form \(\frac{2343}{185}\) or in range [12.6, 12.7] [can be implied] Subtract their \(\mu^{2}\) Answer, in range [\(0.0575,0.084\)]```
2	(i) $\begin{array}{cl}\text { Find } \mathrm{P}(R \geq 6) & \text { or } \mathrm{P}(R<6) \\ =0.0083 & \text { or } 0.9917\end{array}$ Compare with 0.025 [can be from $\mathrm{N}]$ [0.05 if "empty LH tail stated] Reject H_{0}	M1 A1 B1 A1 $\sqrt{ }$ 4	Find $\mathrm{P}(=6)$ from tables/calc, OR RH critical region $P(\geq 6)$ in range $[0.008,0.0083]$ or $P(<6)=$ 0.9917 OR CR is 6 with probability 0.0083/0.9917 Explicitly compare with 0.025 [or 0.975 if consistent] OR state that result is in critical region Correct comparison and conclusion, $\sqrt{ }$ on their p
	(ii) $n=9, \mathrm{P}(\leq 1)=0.0385[>0.025]$ $n=10, \mathrm{P}(\leq 1)=0.0233[<0.025]$ Therefore $n=\mathbf{9}$	$\begin{array}{ll} \mathrm{M1} & \\ \mathrm{~A} 1 & \\ \mathrm{~B} 1 & 3 \end{array}$	At least one, or $n=8, P(\leq 1)=0.0632$ Both of these probabilities seen, don't need 0.025 Answer $n=9$ only, indep't of M1A1, not from P(= 1)
3	(i) $\begin{aligned} & (140-\mu) / \sigma=-2.326 \\ & (300-\mu) / \sigma=0.842\end{aligned}$ Solve to obtain: $\begin{aligned} \mu & =257.49 \\ \sigma & =50.51 \end{aligned}$	M1 B1 A1 $\sqrt{2}$ M1 A1 A1 6	One standardisation equated to Φ^{-1}, allow " 1 -", σ^{2} Both 2.33 and 0.84 at least, ignore signs Both equations completely correct, $\sqrt{ }$ on their z Solve two simultaneous equations to find one variable μ value, in range [257, 258] σ in range [50.4, 50.55]
	(ii) Higher as there is positive skew	$\begin{array}{ll} \\ \hline \mathrm{Bi} & \\ \mathrm{~B} 1 & \mathbf{2} \\ \hline \end{array}$	"Higher" or equivalent stated Plausible reason, allow from normal calculations
4	(i) Each element equally likely to be selected (and all selections independent) OR each possible sample equally likely	B1	One of these two. "Selections independent" alone is insufficient, but don't need this. An example is insufficient.
	$\text { (ii) } \begin{aligned} & \quad \begin{array}{l} B(6,5 / 8) \\ \\ \\ { }^{6} C_{4} p^{4}(1-p)^{2} \\ =0.32187 \end{array} \end{aligned}$	M1 M1 A1 3	$\mathrm{B}(6,5 / 8)$ stated or implied, allow e.g. 499/799 Correct formula, any p Answer, a.r.t. 0.322, can allow from wrong p
	$\text { (iii) } \begin{aligned} & \mathrm{N}(37.5,225 / 16) \\ & \frac{39.5-37.5}{3.75}=0.5333 \\ & \\ & \\ & \\ & =\mathbf{0 . 2 9 7} \end{aligned}$	B1 M1 dep A1 dep M1 A1 6	Normal, mean 37.5, or 37.47 from 499/799, 499/800 14.0625 or 3.75 seen, allow $14.07 / 14.1$ or 3.75 Standardise, wrong or no cc, np, npq, no $\sqrt{ } n$ Correct cc, $\sqrt{ } n p q$, signs can be reversed Tables used, answer < 0.5, $p=5 / 8$ Answer, a.r.t. 0.297 SR: $n p<5$: $\quad \operatorname{Po}(n p)$ stated or implied, B1

5	(i)	$\begin{aligned} & \mathrm{B}(303,0.01) \\ & \approx \mathrm{Po}(3.03) \end{aligned}$	B1 B1 2	$\mathrm{B}(303,0.01)$ stated, allow $p=0.99$ or 0.1 Allow Bin implied clearly by parameters $\mathrm{Po}(3.03)$ stated or implied, can be recovered from (ii)
	(ii)	$e^{-3.03}\left(1+3.03+\frac{3.03^{2}}{2}\right)=0.4165$ AG	$\begin{array}{ll} & \\ \text { M1 } & 2 \end{array}$	Correct formula, ± 1 term or "1 - " or both Convincingly obtain $0.4165(02542)$ [Exact: $0.41535]$
	(iii)	$\begin{aligned} & 302 \text { seats } \Rightarrow \mu=3.02 \\ & e^{-3.02}(1+3.02)=0.1962 \\ & 0.196<0.2 \\ & \text { So } 302 \text { seats. } \end{aligned}$	M1 M1 A1 A1 A1 5	Try smaller value of μ Formula, at least one correct term Correct number of terms for their μ 0.1962 [or 0.1947 from exact] Answer 302 only
	$\begin{aligned} & \text { SR: } \\ & \text { SR: } \\ & \text { SR: } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{B}(303,0.99): \\ p=0.1: r \\ \mathrm{~N} 1 \mathrm{~B} 0 ; \mathrm{M} 0 ; \mathrm{M} 1 \text { then } \\ \mathrm{N}(0.1 n, 0.09 n) ; \text { standardise } \mathrm{n} \\ 6 / 9 \\ \mathrm{~B}(303,0.01) \approx \mathrm{N}(3.03,2.9997): \mathrm{B} \end{array} \end{aligned}$	$\begin{aligned} & 298.98,2.98 \\ & 27.27) \mathrm{B} 1 \mathrm{~B} \\ & n p \& \text { Vnpq } \\ & 0 ; \text { MOAO; } \end{aligned}$	88) or equiv, standardise: M1A1 total 4/9 Standardise 2 with $n p$ \& $\sqrt{n p q}$, M1A0; solve quadratic for $\sqrt{ } n ; n=339$: M1M1M1A1, total 1A0
6	(i)	Customers arrive independently	B1 1	Valid reason in context, allow "random"
	(ii)	$\begin{aligned} & 1-0.9921 \\ & =0.0079 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	Poisson tables, " $1-$ ", or correct formula ± 1 term Answer, a.r.t. $0.008 \quad[1-0.9384=0.0606$: M1A0 $]$
	(iii)	$\begin{aligned} & \begin{array}{l} N(48,48) \\ z=\frac{55.5-48}{\sqrt{48}} \\ =1.0825 \end{array} \\ & 1-\Phi(1.0825) \\ & =0.1394 \end{aligned}$	B1 B1 $\sqrt{ }$ M1 dep A1 dep M1 A1 6	Normal, mean 48 Variance or SD same as mean $\sqrt{ }$ Standardise, wrong or no cc, $\mu=\lambda$ Correct cc, $\sqrt{\lambda}$ Use tables, answer < 0.5 Answer in range [0.139, 0.14]
	(iv)	$\begin{aligned} & e^{-\lambda}<0.02 \\ & \lambda>-\ln 0.02 \\ & \quad=3.912 \\ & 0.4 t=3.912: \quad t=9.78 \text { minutes } \\ & t=9 \text { minutes } 47 \text { seconds } \end{aligned}$	M1 M1 A1 M1 A1 5	Correct formula for $\mathrm{P}(0)$, OR $\mathrm{P}(0 \mid \lambda=4)$ at least In used \quad OR $\lambda=3.9$ at least by T \& I 3.91(2) seen OR $\lambda=3.91$ at least by $T \& I$ Divide λ by 0.4 or multiply by 150, any distribution 587 seconds $\pm 1 \mathrm{sec}$ [inequalities not needed]

7		$\frac{c-4000}{60 / \sqrt{50}}=1.645$ Solve $c=4014 \quad \text { [4013.958] }$ Critical region is $\mathbf{>} 4014$	M1 B1 A1 $\sqrt{ }$ M1 A1 A1 $\sqrt{ }$ 6	Standardise unknown with $\sqrt{ } 50$ or $50 \quad$ [ignore RHS] $z=1.645 \text { or }-1.645 \text { seen }$ Wholly correct eqn, $\sqrt{ }$ on their $z[1-1.645$: M1B1A0] Solve to find c Value of c, a.r.t. 4014 Answer " >4014 ", allow $\geq, \sqrt{ }$ on their c, needs M1M1
	(ii)	Use "Type II is: accept when H_{0} false" $\begin{array}{cc} \begin{array}{c} 4020-4014 \\ \hline 60 / \sqrt{50} \end{array} & \\ =0.7071 & \\ 4013.958] & \\ 1-\Phi(0.712 \text { from } \\ =0.240 & \\ 4013.958] & \\ \hline 0.238 \text { from } \end{array}$	M1dep depM1 A1 $\sqrt{ }$ A1 M1 A1	Standardise 4020 and $4014 \sqrt{ }$, allow 60^{2}, cc With $\sqrt{ } 50$ or 50 Completely correct LHS, $\sqrt{ }$ on their c z-value in range [0.707, 0.712] Normal tables, answer < 0.5 Answer in range [0.2375, 0.2405]
	(iii)	Smaller Smaller cv, better test etc	$\begin{array}{ll} B 1 \\ B 1 \end{array}$	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	$\begin{array}{ll} \\ \text { B1 } & \\ \text { B1 } \end{array}$	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

