

#### **OXFORD CAMBRIDGE AND RSA EXAMINATIONS**

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

### **MEI STRUCTURED MATHEMATICS**

4753/1

Methods for Advanced Mathematics (C3)

8 JUNE 2006

Thursday

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

**TIME** 1 hour 30 minutes

#### **INSTRUCTIONS TO CANDIDATES**

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

#### **INFORMATION FOR CANDIDATES**

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

# Section A (36 marks)

1 Solve the equation |3x - 2| = x. [3]

2 Show that 
$$\int_0^{\frac{1}{6}\pi} x \sin 2x \, dx = \frac{3\sqrt{3} - \pi}{24}$$
. [6]

3 Fig. 3 shows the curve defined by the equation  $y = \arcsin(x - 1)$ , for  $0 \le x \le 2$ .

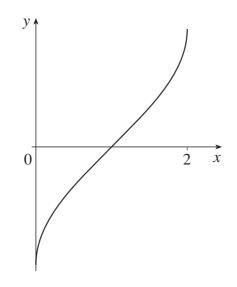


Fig. 3

(i) Find x in terms of y, and show that 
$$\frac{dx}{dy} = \cos y$$
. [3]

(ii) Hence find the exact gradient of the curve at the point where x = 1.5. [4]

4 Fig. 4 is a diagram of a garden pond.

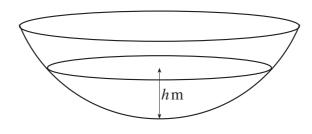


Fig. 4

The volume  $V \text{ m}^3$  of water in the pond when the depth is h metres is given by

$$V = \frac{1}{3}\pi h^2 (3 - h).$$
(i) Find  $\frac{\mathrm{d}V}{\mathrm{d}h}$ . [2]

Water is poured into the pond at the rate of  $0.02 \text{ m}^3$  per minute.

. .

(ii) Find the value of 
$$\frac{dh}{dt}$$
 when  $h = 0.4$ . [4]

- Positive integers a, b and c are said to form a Pythagorean triple if  $a^2 + b^2 = c^2$ . 5
  - (i) Given that t is an integer greater than 1, show that 2t,  $t^2 1$  and  $t^2 + 1$  form a Pythagorean triple. [3]
  - (ii) The two smallest integers of a Pythagorean triple are 20 and 21. Find the third integer.

Use this triple to show that not all Pythagorean triples can be expressed in the form  $2t, t^2 - 1$ and  $t^2 + 1$ . [3]

6 The mass M kg of a radioactive material is modelled by the equation

$$M = M_0 \mathrm{e}^{-kt},$$

where  $M_0$  is the initial mass, t is the time in years, and k is a constant which measures the rate of radioactive decay.

- (i) Sketch the graph of *M* against *t*.
- (ii) For Carbon 14, k = 0.000121. Verify that after 5730 years the mass M has reduced to approximately half the initial mass. [2]

[2]

The half-life of a radioactive material is the time taken for its mass to reduce to exactly half the initial mass.

- (iii) Show that, in general, the half-life T is given by  $T = \frac{\ln 2}{k}$ . [3]
- (iv) Hence find the half-life of Plutonium 239, given that for this material  $k = 2.88 \times 10^{-5}$ . [1] [Turn over

# 4

## Section B (36 marks)

7 Fig. 7 shows the curve  $y = \frac{x^2 + 3}{x - 1}$ . It has a minimum at the point P. The line *l* is an asymptote to the curve.

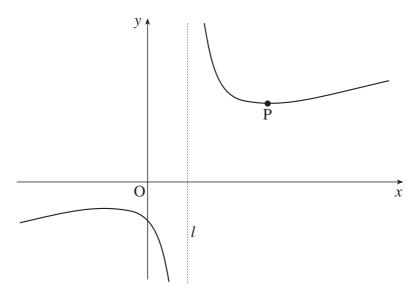


Fig. 7

- (i) Write down the equation of the asymptote *l*. [1]
- (ii) Find the coordinates of P.
- (iii) Using the substitution u = x 1, show that the area of the region enclosed by the x-axis, the curve and the lines x = 2 and x = 3 is given by

$$\int_{1}^{2} \left( u + 2 + \frac{4}{u} \right) \mathrm{d}u.$$

Evaluate this area exactly.

(iv) Another curve is defined by the equation  $e^y = \frac{x^2 + 3}{x - 1}$ . Find  $\frac{dy}{dx}$  in terms of x and y by differentiating implicitly. Hence find the gradient of this curve at the point where x = 2.

[4]

[7]

[6]

8 Fig. 8 shows part of the curve y = f(x), where  $f(x) = e^{-\frac{1}{5}x} \sin x$ , for all x.

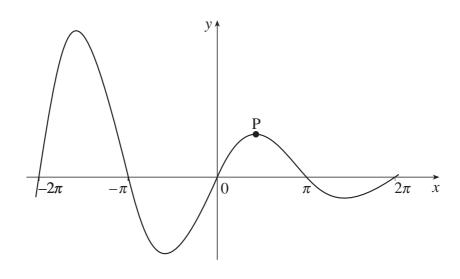


Fig. 8

(i) Sketch the graphs of

$$(A) \quad y = f(2x),$$

(B) 
$$y = f(x + \pi)$$
. [4]

[6]

(ii) Show that the x-coordinate of the turning point P satisfies the equation  $\tan x = 5$ . Hence find the coordinates of P.

(iii) Show that  $f(x + \pi) = -e^{-\frac{1}{5}\pi} f(x)$ . Hence, using the substitution  $u = x - \pi$ , show that

$$\int_{\pi}^{2\pi} f(x) dx = -e^{-\frac{1}{5}\pi} \int_{0}^{\pi} f(u) du$$

Interpret this result graphically. [You should *not* attempt to integrate f(x).] [8]