

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4727

Further Pure Mathematics 3

Thursday 15 JUNE 2006 Afternoon 1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of 1 + 2i, giving your answers in the form a + ib. [3]
 - **(b)** For the group of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$.
- 2 (a) Given that $z_1 = 2e^{\frac{1}{6}\pi i}$ and $z_2 = 3e^{\frac{1}{4}\pi i}$, express $z_1 z_2$ and $\frac{z_1}{z_2}$ in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.
 - (b) Given that $w = 2(\cos \frac{1}{8}\pi + i \sin \frac{1}{8}\pi)$, express w^{-5} in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $0 \le \theta < 2\pi$.
- Find the perpendicular distance from the point with position vector $12\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ to the line with equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + t(8\mathbf{i} + 3\mathbf{j} 6\mathbf{k})$.
- 4 Find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{x^2y}{1+x^3} = x^2$$

for which y = 1 when x = 0, expressing your answer in the form y = f(x). [8]

- 5 A line l_1 has equation $\frac{x}{2} = \frac{y+4}{3} = \frac{z+9}{5}$.
 - (i) Find the cartesian equation of the plane which is parallel to l_1 and which contains the points (2, 1, 5) and (0, -1, 5).
 - (ii) Write down the position vector of a point on l_1 with parameter t. [1]
 - (iii) Hence, or otherwise, find an equation of the line l_2 which intersects l_1 at right angles and which passes through the point (-5, 3, 4). Give your answer in the form $\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$. [4]
- **6** (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = \sin x. \tag{6}$$

(ii) Find the solution of the differential equation for which y = 0 and $\frac{dy}{dx} = \frac{4}{3}$ when x = 0. [4]

7 The series C and S are defined for $0 < \theta < \pi$ by

$$C = 1 + \cos \theta + \cos 2\theta + \cos 3\theta + \cos 4\theta + \cos 5\theta,$$

$$S = \sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta + \sin 5\theta.$$

(i) Show that
$$C + iS = \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} e^{\frac{5}{2}i\theta}$$
. [4]

- (ii) Deduce that $C = \sin 3\theta \cos \frac{5}{2}\theta \csc \frac{1}{2}\theta$ and write down the corresponding expression for *S*. [4]
- (iii) Hence find the values of θ , in the range $0 < \theta < \pi$, for which C = S.
- 8 A group D of order 10 is generated by the elements a and r, with the properties $a^2 = e$, $r^5 = e$ and $r^4a = ar$, where e is the identity. Part of the operation table is shown below.

	e					r^4				
e	e	а	r	r^2	r^3	r^4	ar	ar^2	ar^3	ar^4
a	а	e			ar^3	ar^4	 			
r	r		r^2	r^3	r^4	e	 			
r^2	r^2		r^3	r^4	e	r	 			
r^3	r^3		r^4	e	r	r^2	i I			
r^4	r^4	ar	e	r	r r^2	r^3	 			
ar	ar		ar^2	ar^3	ar^4	a	Г——— 			
ar^2	ar^2		ar^3	ar^4	a	ar	İ			
ar^3	ar^3		ar^4	a	ar	ar^2	 		<u> </u>	
ar^4	ar^4		i i a	ar	ar^2	ar^3	i 			

- (i) Give a reason why D is not commutative. [1]
- (ii) Write down the orders of any possible proper subgroups of D. [2]
- (iii) List the elements of a proper subgroup which contains

(a) the element
$$a$$
, [1]

(b) the element
$$r$$
. [1]

- (iv) Determine the order of each of the elements r^3 , ar and ar^2 . [4]
- (v) Copy and complete the section of the table marked **E**, showing the products of the elements ar, ar^2 , ar^3 and ar^4 . [5]

BLANK PAGE