Mark Scheme 4726 June 2007

- 1 Correct formula with correct rRewrite as $a + b\cos 6\theta$ Integrate their expression correctly Get $\frac{1}{3}\pi$
- 2 (i) Expand to $\sin 2x \cos^{1}/4\pi + \cos 2x \sin^{1}/4\pi$ Clearly replace $\cos^{1}/4\pi$, $\sin^{1}/4\pi$ to A.G.
 - Attempt to expand $\cos 2x$ (ii) Attempt to expand $\sin 2x$ Get $\frac{1}{2}\sqrt{2}$ (1 + 2x - 2x² - 4x³/3)
- Allow $r^2 = 2 \sin^2 3\theta$ M1 M1 $a, b \neq 0$ A1 $\sqrt{1}$ From $a + b\cos 6\theta$ A1 cao
- **B**1
- **B**1
- Allow $1 2x^2/2$ M1
- M1 Allow $2x 2x^3/3$
- Four correct unsimplified terms A1 in any order; allow bracket; AEEF SR Reasonable attempt at $f^{n}(0)$ for n=0 to 3 M1 Attempt to replace their values in Maclaurin **M**1 A1 Get correct answer only
- M1 Allow *C*=0 here
 - $M1\sqrt{M}$ May imply above line; on their P.F.
 - M1 Must lead to at least 3 coeff.; allow cover-up method for A
 - cao from correct method A1
 - B1 $\sqrt{}$ On their A
 - B1 $\sqrt{}$ On their *C*; condone no constant; ignore any $B \neq 0$
 - M1 Two terms seen
 - M1 Allow +
 - A1
 - A1 cao
 - On any $k\sqrt{1-x^2}$ **B**1
 - **M**1 In any reasonable integral
- A1
- SR Reasonable sub. **B**1 Replace for new variable and attempt to integrate (ignore limits) **M**1 Clearly get $\frac{1}{2\pi}$ A1

Express as $A/(x-1) + (Bx+C)/(x^2+9)$ (i) Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ Sub. for *x* or equate coeff.

Get A=1, B=0,C=9

- (ii) $\operatorname{Get} A \ln(x-1)$ Get C/3 $\tan^{-1}(x/3)$
- 4 (i) Reasonable attempt at product rule Derive or quote diff. of $\cos^{-1}x$ Get $-x^2(1 - x^2)^{-1/2} + (1 - x^2)^{1/2} + (1 - x^2)^{-1/2}$ Tidy to $2(1 - x^2)^{1/2}$
 - Write down integral from (i) (ii) Use limits correctly Tidy to $\frac{1}{2}\pi$

26

3

5

Attempt at parts on $\int 1 (\ln x)^n dx$
Get x $(\ln x)^n - \int^n (\ln x)^{n-1} dx$
Put in limits correctly in line above
Clearly get A.G.

- (ii) Attempt I_3 to I_2 as $I_3 = e 3I_2$ Continue sequence in terms of In Attempt I_0 or I_1 Get 6 - 2e
- 6 (i) Area under graph $(= \int 1/x^2 dx, 1 \text{ to } n+1)$ < Sum of rectangles (from 1 to *n*)

Area of each rectangle = Width x Height = $1 \times 1/x^2$

- (ii) Indication of new set of rectangles
 Similarly, area under graph from 1 to n
 > sum of areas of rectangles from 2 to n
 Clear explanation of A.G.
- (iii) Show complete integrations of RHS, using correct, different limits
 Correct answer, using limits, to one integral
 Add 1 to their second integral to get complete series
 Clearly arrive at A.G.
- (iv) Get one limit Get both 1 and 2

- M1 Two terms seen A1
- M1

A1 ln e = 1, ln 1 = 0 seen or implied

M1

A1 $I_2 = e - 2I_1$ and/or $I_1 = e - I_0$

M1 $(I_0 = e-1, I_1 = 1)$

A1 cao

- B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)
- B1 Some evidence of area worked out seen or implied
- **B**1

A1

M1

A1

B1

B1

Quotable

- B1 Sum (total) seen or implied
- B1 Diagram; use of left-shift of previous areas
- M1 Reasonable attempt at $\int x^{-2} dx$

Quotable; limits only required

4726

7

8

- (i) Use correct definition of cosh or sinh x Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
 - (ii) Get $\cosh(x y) = 1$ Get or imply (x - y) = 0 to A.G.
 - (iii) Use $\cosh^2 x = 9$ or $\sinh^2 x = 8$ Attempt to solve $\cosh x = 3$ (not -3) or $\sinh x = \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only) Get at least one *x* solution correct Get both solutions correct, *x* and *y*
- B1 Seen anywhere in (i) M1 A1 $\sqrt{}$ A1 Accept e^{x-y} and e^{y-x} M1
- A1
- B1 M1 $x = \ln(3 + \sqrt{8})$ from formulae book or from basic cosh definition
- A1
- A1 x, y = $\ln(3 \pm 2\sqrt{2})$; AEEF
 - SR Attempt tanh = sinh/coshB1Get tanh x = $\pm \sqrt{8/3}$ (+ or -)M1Get at least one sol. correctA1Get both solutions correctA1SR Use exponential definitionB1
 - $\begin{array}{c} \text{Get quadratic in } e^x \text{ or } e^{2x} \\ \text{M1} \\ \end{array}$
 - Solve for one correct x A1 Get both solutions, x and y A1

(i) $x_2 = 0.1890$ $x_3 = 0.2087$ $x_4 = 0.2050$ $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$

- (ii) Attempt to diff. f(x)Use α to show $f'(\alpha) \neq 0$
- (iii) $\delta_3 = -0.0037$ (allow -0.004)
- (iv) Develop from $\delta_{10} = f'(\alpha) \, \delta_9$ etc. to get δ_i or quote $\delta_{10} = \delta_3 f'(\alpha)^7$ Use their δ_1 and $f'(\alpha)$ Get 0.000000028

B1

- B1 $\sqrt{1}$ From their x_1 (or any other correct)
- B1 $\sqrt{}$ Get at least two others correct, all to a minimum of 4 d.p.
- B1 cao; answer may be retrieved despite some errors
- M1 $k/(2+x)^3$
- A1 $\sqrt{}$ Clearly seen, or explain k/(2+x)³ \neq 0 as k \neq 0; allow \pm 0.1864
- $\begin{array}{ccc} \text{SR} & \text{Translate } y=1/x^2 & \text{M1} \\ & \text{State/show } y=1/x^2 \text{ has no TP} & \text{A1} \end{array}$
- B1 $\sqrt{}$ Allow \pm , from their x₄ and x₃
- M1 Or any δ_1 eg use $\delta_9 = x_{10} x_9$

M1

A1 Or answer that rounds to \pm 0.00000003

9 (i) Quote x = aAttempt to divide out

Get y = x - a

(ii) Attempt at quad. in x (=0) Use $b^{2} - 4ac \ge 0$ for real x Get $y^2 + 4a^2 \ge 0$ State/show their quad. is always >0

(iii)

B1

M1 Allow M1 for y=x here; allow

A1 (x-a) + k/(x-a) seen or implied

A1 Must be equations

M1

- M1 Allow >
- A1
- B1 Allow \geq
- B1 $\sqrt{}$ Two asymptotes from (i) (need not be labelled)
- B1 Both crossing points

B1 $$ Approaches – correct shap	e
SR Attempt diff. by quotient/product	
rule	M 1
Get quadratic in x for $dy/dx = 0$	
and note $b^2 - 4ac < 0$	A1
Consider horizontal asymptotes	B1
Fully justify answer	B1