Mark Scheme 4730 June 2007

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using $T = 2\pi/\omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	-
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				$= A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$			
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes
				shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A 1		
		M1		For attempting to find angle (α)

			shown	
For magnitudes of 2 sides correctly marked	A 1			
For magnitudes of all 3 sides correctly marked	A1			
	M1		•	ng to find angle (α) the side of magnitude
	M1		For correct u	use of the cosine rule
$0.399^2 = 0.57^2 + 0.6^2 - 2 \times 0.57 \times 0.6\cos \alpha$	A1ft		•	
Angle is 140°	A 1	7	(180	$-39.8)^{\circ}$

2	ALTERNATIVE METHOD			
		M1		For using $I = \Delta mv$ parallel to the initial direction of motion or parallel to the impulse
	$-0.6\cos\alpha = 0.057 \text{ x } 7\cos\beta - 0.057 \text{ x } 10$	A 1		
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
		M1		For using $I = \Delta mv$ perpendicular to the initial direction of motion or perpendicular to the impulse
	$0.6\sin\alpha = 0.057 \times 7\sin\beta$	A 1		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$			
		M1		For eliminating β *or γ
	$0.399^{2} = (0.57 - 0.6\cos\alpha)^{2} + (0.6\sin\alpha)^{2}$ or $0.399^{2} = (0.6 - 0.57\cos\alpha)^{2} + (0.057\sin\alpha)^{2}$	A1ft		- , ,
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

3 (i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law with a = v dv/dx
(1/v) dv/dx = -2	A1	2	AG
(ii) $\left[\int (1/v)dv = \int -2dx\right]$	M1		For separating variables and attempting to integrate
ln v = -2x (+C)	A1		
$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
$v = ue^{-2x}$	A1	4	AG
(iii) $ [\int e^{2x} dx = \int u dt] $	M1		For using v = dx/dt and separating variables
$e^{2x}/2 = ut (+C)$	A1		
$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

ALTERNATIVE METHOD FOR PART (iii)			
$\left[\int \frac{1}{v^2} dv = -2 \int dt - \frac{1}{v} - \frac{1}{v} - \frac{1}{v} \right] = -2t + A$, and	M1		For using a = dv/dt, separating variables, attempting to integrate
A = -1/u]			and using $v(0) = u$
	M1		For substituting $v = ue^{-2x}$
$-e^{2x}/u = -2t - 1/u$	A 1		-
u = 6.70	A1	4	Accept $(e^4 - 1)/8$

4	$y=15\sin\alpha\qquad (=12)$	B1		
	$[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A1		
	4a + 3b = 0	A 1		
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1		For correct method for speed or direction of A
	Speed of A is 12.8ms ⁻¹ and direction is 111°	A1		Direction may be stated in any
	anticlockwise from 'i' direction			form, including $\theta=69^{\circ}$ with
				heta clearly and appropriately
				indicated
	Speed of B is 6ms ⁻¹ to the right	A 1	10	Depends on first three M marks

5	(i)	M1		For taking moments of forces on BC about B
	$80 \times 0.7\cos 60^{\circ} = 1.4T$	A 1		
	Tension is 20N	A1		
	$[X = 20\cos 30^{\circ}]$	M1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		$ft X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	$ft Y = 80 - Tsin30^{\circ}$
	(ii)	M1		For taking moments of forces on
				AB, or on ABC, about A
	$17.3 \times 1.4 \sin \alpha = (80 \times 0.7 + 70 \times 1.4) \cos \alpha$ or	A1ft		
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^{\circ}) =$			
	$20\cos 60^{\circ}(1.4\cos \alpha + 1.4\cos 60^{\circ}) +$			
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1	4	expression for tall to

ALTERNATIVE METHOD FOR PART (i)		
	M1	For taking moments of forces on
V 1 4 1 600 V 1 4 600 00 0 7 600		BC about B
$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1	Where H and V are components of
		T
	M1	For using $H = V \sqrt{3}$ and solving
		simultaneous equations
Tension is 20N	A 1	
Horizontal component is 17.3N	B1ft	ft value of H used to find T
[Y = 80 - V]	M1	For resolving forces vertically
Vertical component is 70N	A1ft 7	ft value of V used to find T

	(1)	3.54		
6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
	$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A 1		
	OP = 7.25m	A1	3	AG From $5.25 + 2$
	(ii) Initial $PE = (80 + 80)g(5) = 7840$	B1		
	or $(80 + 80)$ gX used in energy equation			
	Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	B1		
	[Initial EE = $2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
	Final EE = $2058x7^2/(2x5.25)$ (= 9604), or			1 01 womg == 7, 11 , ==
	$2058(X + 2)^{2}/(2x5.25)$			
	[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
	final energy = 9604	1,11		compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
	$196X^2 - 784X - 980 = 0$			energy, or using the principle
				and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A 1	5	AG
	the net	711	3	710
	(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
	(iii) $ [1 \text{ E gain} - 80\text{g}(7.23 + 3)] $	IVII		level to O
	PE gain = 9604	A1		level to O
		A1	3	AG
	PE gain = EE at net level > P just reaches O		<u></u>	AU
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'	D.1	2	
	For any other of the above	B1	2	

FIRST ALTERNATIVE METHOD FOR			
PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second law with a = v dv/dx, separating the variables and attempting to integrate
$v^2/2 = gx - 1.225x^2 \ (+C)$	A 1		Any correct form
	M1		For using $v(2) = 3.5$
C = -8.575	A1		-
$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \implies P\&Q \text{ just}$ reach the net	A1	5	AG

SECOND ALTERNATIVE METHOD FOR PART (ii)					
$\ddot{x} = g - 2.45x$	(=-2.45(x-4))	B1			
		M1	For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$		
$3.5^2 = 2.45(A^2 - (-2)^2)$	(A=3)	A1			
[(4-2)+3]		M1	For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A		
distance travelled downwar	ds by P and $Q = 5 \rightarrow P Q$	A1	5 AG		
just reach the net					

7	(i) $[a = 0.7^2/0.4]$	N/I 1		For using $a = v^2/r$
'		M1		For using $a = V/r$
	For not more than one error in	A1		
	$T - 0.8g\cos 60^{\circ} = 0.8x0.7^{2}/0.4$			
	Above equation complete and correct	A1		
	Tension is 4.9N	A1	4	
	(ii)	M1		For using the principle of
	2			conservation of energy
	$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
	$\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ$			
	(2.1 - 0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms ⁻¹	A1	4	AG
	(iii)	M1		For using Newton's second law transversely
	$(m)0.4\ddot{\theta} = -(m)g \sin \theta$	A1		*Allow m = 0.8 (or any other numerical value)
	$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
	[$\frac{1}{2}$ m0.15 ² = mg0.4(1 - cos θ _{max}) θ _{max} = 4.34° (0.0758rad)]	M1		For using the principle of conservation of energy to find θ_{max}
	$ heta_{ m max}$ small justifies $0.4\ddot{ heta}\approx$ -g $ heta$, and this implies SHM	A1	5	
	(iv) $[T = 2\pi/\sqrt{24.5} = 1.269]$	M1		For using $T = 2\pi/n$
	$[\sqrt{24.5} t = \pi]$			or
	• · · · · · · · · · · · · · · · · · · ·			for solving either $\sin nt = 0$
				(non-zero t) (considering
				displacement) or $\cos nt = -1$
				(considering velocity)
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$