Mark Scheme 4733 June 2007

1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen
		$249509.16/100 - (\text{their } \bar{x}^2)$	M1		Biased estimate: 162.2016: can get B1M1M0
		× 100/99	M1		Multiply by $n/(n-1)$
		= 163.84	A1	4	Answer, 164 or 163.8 or 163.84
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood
	(11)	so can assume distribution is	02	-	(though CLT does not need to be mentioned)
		normal			[SR: No with reason that is not wrong: B1]
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied
4		$\approx Po(3.25)$	M1		Poisson, <i>or</i> correct N on their $B(n, p)$
			A1√		Parameter their <i>np</i> , <i>or</i> correct parameter(s) $$
		$e^{-\lambda} \frac{\lambda^4}{4!}$	M1		Correct formula, or interpolation
			A1	5	· 1
		= 0.180	AI	5	Answer, 0.18 or a.r.t. 0.180
3	(i)	Binomial	B1	1	[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1] Binomial stated or implied
3			B1 B1	1	
	(ii)	Each element equally likely		•	All elements, or selections, equally likely stated
		Choices independent	B1	2	Choices independent [not just "independent"]
	(*)		D1		[can get B2 even if (i) is wrong]
4	(i)	<i>Two of:</i> Distribution symmetric	B1	•	One property
		No substantial truncation	B1	2	Another definitely different property
		Unimodal/Increasingly			Don't give both marks for just these two
		unlikely further from μ , etc			"Bell-shaped": B1 only unless "no truncation"
	(ii)	Variance $8^2/20$	M1		Standardise, allow cc, don't need n
		$z = \frac{47.0 - 50.0}{\sqrt{2}} = -1.677$	A1		Denominator (8 or 8^2 or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20^2)
		$\sim \sqrt{8^2/20}$	A1		<i>z</i> -value, a.r.t. –1.68 or +1.68
		$\Phi(1.677) = 0.9532$	A1	4	Answer, a.r.t. 0.953
5	(i)	$H_1: \lambda > 2.5 \text{ or } 15$	B1	1	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "
-	(ii)	Use parameter 15	M1		$\lambda = 15$ used [N(15, 15) gets this mark only]
	(11)	P(> 23)	M1		Find P(> 23 or \ge 23), final answer < 0.5
		1 (* 23)			eg 0.0327 or 0.0122
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	Answer, 1.95% or 2% or 0.0195 or 0.02
				e	[SR: 2-tailed, 3.9% gets 3/3 here]
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,
	(111)	$P(\le 23 \mid \lambda = 17) = 0.5307$ $P(\le 23 \mid \lambda = 18) = 0.8989$			0.9047, 0.8551, .9317, .8933, .9907, .9805
		Parameter = 17	A1		Parameter 17 [17.1076], needs $P(\le 23)$, cwo
		1 arameter = 17	111		[SR: if insufficient evidence can give B1 for 17]
		$\lambda = 17/6 \text{ or } 2.83$	M1	3	Their parameter $\div 6$ [2.85]
		$\lambda = 17/0 \text{ of } 2.85$		J	[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282$ M1; 18.05 A0]
6	(i)	$H_0: p = 0.19, H_1: p < 0.19$	B2		[SK: Solve $(25.5 - k)/(k - 1.262 \text{ MI}, 18.05 \text{ A0}]$ Correct, B2. One error, B1, but x or \bar{x} or r: B0
U	(1)	where <i>p</i> is population proportion	ылары М1		Binomial probabilities, allow 1 term only
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	A1		Correct expression $[0.0148 + 0.0693]$
		$0.01 + 20 \times 0.01 \times 0.19$	AI		Confect expression $[0.0148 \pm 0.0095]$
		0.00/1	A 1		Duch chilitate a $\pi \neq 0.094$
		= 0.0841	A1 B1		Probability, a.r.t. 0.084
		Compare 0.1	B1		Explicit comparison of "like with like"
	or	Compare 0.1 Add binomial probs until ans > 0.1	B1 A1		
	or	Compare 0.1 Add binomial probs until ans > 0.1 Critical region ≤ 1	B1 A1 B1		Explicit comparison of "like with like" $[P(\le 2) = 0.239]$
	or	Compare 0.1Add binomial probs until ans > 0.1 Critical region ≤ 1 Reject H ₀	B1 A1 B1 M1		Explicit comparison of "like with like" $[P(\le 2) = 0.239]$ Correct deduction and method [needs P(≤ 1)]
	or	Compare 0.1Add binomial probs until ans > 0.1 Critical region ≤ 1 Reject H ₀ Significant evidence that proportion	B1 A1 B1	8	Explicit comparison of "like with like" $[P(\le 2) = 0.239]$ Correct deduction and method [needs P(≤ 1)] Correct conclusion in context
		Compare 0.1Add binomial probs until ans > 0.1Critical region ≤ 1 Reject H ₀ Significant evidence that proportionof e's in language is less than 0.19	B1 A1 B1 M1 A1√		Explicit comparison of "like with like" $[P(\le 2) = 0.239]$ Correct deduction and method [needs P(≤ 1)] Correct conclusion in context [SR: N(3.8, 3.078): B2M1A0B1M0]
	<i>or</i>	Compare 0.1Add binomial probs until ans > 0.1 Critical region ≤ 1 Reject H ₀ Significant evidence that proportion	B1 A1 B1 M1	8	Explicit comparison of "like with like" $[P(\le 2) = 0.239]$ Correct deduction and method [needs P(≤ 1)] Correct conclusion in context

-		_				Di		.			1	
7	(i)	(i)				B1		Horizontal straight line				
						B1		Positive parabola, symmetric al				
1						B1	3	-	Completely correct, including correct relationship between two			
				_								
								Don't need vertical lines or horizontal lines outside				
								range, but don't give last B1 if horizontal line				
								conti	nues past "±	1"		
	(;;)					B2	2	Com	ot statoment	about diatai	butions (<i>not</i> graphs)	
	(11)	(ii) S is equally likely to take any value in range, T is more likely at extremities (iii) $\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2}\right]^{1}$			D2	4	Cone			r correct description		
									only: B1]	i correct description		
	(iii)				M1		Integ		n limits $(-1,$	t) or $(t, 1)$		
1	(111)				1011		meg					
		$\int_{t} 2^{t} u u = \lfloor 2 \rfloor_{t}$			B1		Corre	[recoverable if <i>t</i> used later] Correct indefinite integral				
		$\frac{1}{2}(1-t^3) = 0.2 \text{ or } \frac{1}{2}(t^3+1) = 0.8$				M1		Equate to 0.2, or 0.8 if $[-1, t]$ used			used	
		$t^3 = 0.6$		· /		M1			Solve cubic equation to find t			
	t = 0.8434					A1	5		Answer, in range [0.843, 0.844]			
8	(i)								lardise 64.2			
1	<u>\-</u> /	$\frac{1}{\sqrt{12.25/23}}$	_	1.044		M1dep A1			z = 1.644 or 1.645, must be +			
		$\sqrt{12.25/25}$ P(z > 1.644)							Find $\Phi(z)$, answer < 0.5			
		= 0.05				dep M1 A1	4		Answer, a.r.t. 0.05 or 5.0%			
1	(ii)			3.5		M1					not -	
1	()	$63 + 1.043 \times \frac{1}{\sqrt{50}}$				B1			$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not – k = 1.645 (allow 1.64, 1.65)			
						Al	3		Answer, a.r.t. 63.8, allow $>, \ge, =, c.w.o.$			
		$ \ge 63.81 $ (b) P(< 63.8 $\mu = 65$)						Use of correct meaning of Type II				
					M1 M1			Standardise their c with $\sqrt{50}$				
1		$\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$				A1						
						AI A1	4	$z = (\pm) 2.40$ [or -2.424 or -2.404 etc]				
		0.0083				Answer, a.r.t. 0.008 [eg, 0.00767]						
1	(iii)	(iii) B better: Type II error smaller (and same Type I error)				B2√	2	This			sample bigger": B1.	
			M2	[SR: Partial answer: B1] Use either $nq > 5$ or $npq > 5$				· B1]				
9	(a)	(a) $np > 5$ and $nq > 5$				M2		Usee			$n = 20^{\circ} - 10^{\circ}$	
		0.75n > 5 is relevant				A 1	2	[SR: If M0, use $np > 5$, or " $n = 20$ " seen: M1 Final answer $n > 20$ or $n > 20$ only				
	(1-)	n > 20				A1 M1	3	Final answer $n > 20$ or $n \ge 20$ only Standardian area and equate to Φ^{-1} + equations				
1	(b)	•						Standardise once, and equate to Φ^{-1} , $\pm cc$				
		$\mu - 46.5 = 2.25\sigma$							Standardise twice, signs correct, cc correct Both 1.75 and 2.25			
1									Correct solution method to get one variable			
		Solve simultaneously $\mu = 60$							μ , a.r.t. 60.0 or ± 154.5			
			A1 A1	6				how): A1 hoth]				
				U	σ, a.r.t. 6.00 [Wrong cc (below): A1 both] [SR: $σ^2$: M1A0B1M1A1A0]							
1			M1dep					IAIAUJ				
			depM1		$np = 60$ and $npq = 6^2$ or 6 Solve to get <i>q</i> or <i>p</i> or <i>p</i>							
		q = 36/60 = 0.6 p = 0.4							Solve to get q or p or n $p = 0.4 \sqrt{\text{ on wrong cc or } z}$			
		p = 0.4 $n = 150$					4		$14 \sqrt{\text{on wro}}$			
		n = 150					-	n-1				
		_		4	σ	μ		<i>q</i>	<i>p</i> (±0.01)	<i>n</i>	1	
		7	0.5	46.5	6	60		0.6	0.4	150		
			- 1	1-		60.062	~	6 5 0 (0.0405	151.0		
			71	46	6.25	5	0.	6504	0.3496	171.8		
		-	.1 ~	15 -	6.25	60.562	~	C 1 5 0	0.2550	170 4		
			1.5	46.5	6.25	5	0.	6450	0.3550	170.6		
		-	05	15 5	6.25	59.562	Δ	(55 0	0 2442	172.0		
		70.5 45.5 6.25				5		6558	0.3442	173.0		
			'1.5 70	45.5 46	6.5 6	60.125		7027	0.2973	202.2		
		59.5	0.	6050	0.3950	150.6						