Mark Scheme 4733

 June 2007| (i)
 (ii) | $\begin{aligned} & \hat{\mu}=4830.0 / 100=48.3 \\ & 249509.16 / 100-\left(\text { their } \bar{x}^{2}\right) \\ & \times 100 / 99 \\ & =163.84 \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 4 | 48.3 seen
 Biased estimate: 162.2016: can get B1M1M0
 Multiply by $n /(n-1)$
 Answer, 164 or 163.8 or 163.84 |
| :---: | :---: | :---: | :---: | :---: |
| | No, Central Limit theorem applies, so can assume distribution is normal | B2 | 2 | "No" with statement showing CLT is understood (though CLT does not need to be mentioned)
 [SR: No with reason that is not wrong: B1] |
| 2 | $\begin{aligned} & \mathrm{B}(130,1 / 40) \\ & \approx \mathrm{Po}(3.25) \\ & e^{-\lambda} \frac{\lambda^{\dagger}}{4!} \\ & =0.180 \end{aligned}$ | B1 M1
 A1 $\sqrt{ }$
 M1
 A1 | 5 | B(130, 1/40) stated or implied
 Poisson, or correct N on their $\mathrm{B}(n, p)$
 Parameter their $n p$, or correct parameter(s) $\sqrt{ }$
 Correct formula, or interpolation
 Answer, 0.18 or a.r.t. 0.180
 [SR: $\mathrm{N}(3.25,3.17)$ or $\mathrm{N}(3.25,3.25)$: B1M1A1] |
| (ii) | Binomial | B1 | 1 | Binomial stated or implied |
| | Each element equally likely Choices independent | | 2 | All elements, or selections, equally likely stated Choices independent [not just "independent"] [can get B2 even if (i) is wrong] |
| 4 (i) | Two of: Distribution symmetric No substantial truncation Unimodal/Increasingly unlikely further from μ, etc | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ | 2 | One property
 Another definitely different property Don't give both marks for just these two "Bell-shaped": B1 only unless "no truncation" |
| (ii) | $\begin{aligned} & \text { Variance } 8^{2} / 20 \\ & z=\frac{47.0-50.0}{\sqrt{8^{2} / 20}}=-1.677 \\ & \Phi(1.677)=0.9532 \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | 4 | Standardise, allow cc, don't need n
 Denominator (8 or 8^{2} or $\left.\sqrt{ } 8\right) \div\left(20\right.$ or $\sqrt{ } 20$ or $\left.20^{2}\right)$
 z-value, a.r.t. -1.68 or +1.68
 Answer, a.r.t. 0.953 |
| (ii) | $\mathrm{H}_{1}: \lambda>2.5$ or 15 | B1 | 1 | $\lambda>2.5$ or 15, allow μ, don't need "H, |
| | Use parameter 15
 $\mathrm{P}(>23)$
 $1-0.9805=0.0195$ or 1.95% | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | ```\(\lambda=15\) used \(\quad[\mathrm{N}(15,15)\) gets this mark only] Find \(\mathrm{P}(>23\) or \(\geq 23\)), final answer \(<0.5\) eg 0.0327 or 0.0122 Answer, \(1.95 \%\) or \(2 \%\) or 0.0195 or 0.02 [SR: 2-tailed, 3.9\% gets 3/3 here]``` |
| | $\begin{aligned} & \mathrm{P}(\leq 23 \mid \lambda=17)=0.9367 \\ & \mathrm{P}(\leq 23 \mid \lambda=18)=0.8989 \\ & \text { Parameter }=17 \\ & \lambda=17 / 6 \text { or } 2.83 \end{aligned}$ | M1
 A1
 M1 | 3 | One of these, or their complement: . $9367, .8989$, 0.9047, 0.8551, . 9317, . $8933, .9907, .9805$
 Parameter 17 [17.1076], needs $\mathrm{P}(\leq 23)$, cwo
 [SR: if insufficient evidence can give B1 for 17]
 Their parameter $\div 6$
 [2.85]
 [SR: Solve $(23.5-\lambda) / \sqrt{\lambda}=1.282 \mathrm{M} 1 ; 18.05 \mathrm{~A} 0]$ |
| 6 (i) | $\mathrm{H}_{0}: p=0.19, \mathrm{H}_{1}: p<0.19$
 where p is population proportion $\begin{aligned} & 0.81^{20}+20 \times 0.81^{19} \times 0.19 \\ & =0.0841 \\ & \text { Compare } 0.1 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \end{array}$ | | Correct, B2. One error, B1, but x or \bar{x} or r : B0
 Binomial probabilities, allow 1 term only
 Correct expression [0.0148 + 0.0693]
 Probability, a.r.t. 0.084
 Explicit comparison of "like with like" |
| or | Add binomial probs until ans >0.1 Critical region ≤ 1 | $\begin{array}{\|l\|} \hline \text { A1 } \\ \text { B1 } \end{array}$ | | $[\mathrm{P}(\leq 2)=0.239]$ |
| | Reject H_{0}
 Significant evidence that proportion of e 's in language is less than 0.19 | $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \sqrt{ } \\ \hline \end{array}$ | 8 | Correct deduction and method [needs $\mathrm{P}(\leq 1)$] Correct conclusion in context[SR: N(3.8, 3.078): B2M1A0B1M0] |
| (ii) | Letters not independent | B1 | 1 | Correct modeling assumption, stated in context Allow "random", "depends on message", etc |

7	(i)		$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	3	Horizontal straight line Positive parabola, symmetric about 0 Completely correct, including correct relationship between two Don't need vertical lines or horizontal lines outside range, but don't give last B1 if horizontal line continues past " ± 1 "
		is equally likely to take any value range, T is more likely at xtremities	B2	2	Correct statement about distributions (not graphs) [Partial statement, or correct description for one only: B1]
		$\begin{aligned} & \int_{t}^{1} \frac{3}{2} x^{2} d x=\left[\frac{x^{3}}{2}\right]_{t}^{1} \\ & 1 / 2\left(1-t^{3}\right)=0.2 \text { or } 1 / 2\left(t^{3}+1\right)=0.8 \\ & t^{3}=0.6 \\ & t=0.8434 \end{aligned}$	M1 B1 M1 M1 A1	5	Integrate $\mathrm{f}(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if t used later] Correct indefinite integral Equate to 0.2 , or 0.8 if $[-1, t]$ used Solve cubic equation to find t Answer, in range [0.843, 0.844]
8	(i)	$\begin{array}{ll} \frac{64.2-63}{\sqrt{12.25 / 23}} & =1.644 \\ \mathrm{P}(z>1.644) \\ =0.0 \end{array}$	M1dep A1 dep M1 A1	4	Standardise 64.2 with $\sqrt{ } n$ $z=1.644$ or 1.645 , must be + Find $\Phi(z)$, answer <0.5 Answer, a.r.t. 0.05 or 5.0%
	(ii)	(a) $\quad 63+1.645 \times \frac{3.5}{\sqrt{50}}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{aligned} & 63+3.5 \times k / \sqrt{50, k} \text { from } \Phi^{-1}, \text { not }- \\ & k=1.645 \text { (allow } 1.64,1.65 \text {) } \end{aligned}$ Answer, a.r.t. 63.8, allow $>, \geq$, =, c.w.o.
		(b) $\quad$$\mathrm{P}(<63.8 \mid \mu=65)$ $03.5-65 \sqrt{50}$$=-2.3956$	M1 M1 A1 A1	4	Use of correct meaning of Type II Standardise their c with $\sqrt{ } 50$ $z=(\pm) 2.40$ [or -2.424 or -2.404 etc] Answer, a.r.t. 0.008 [eg, 0.00767]
	(iii)	B better: Type II error smaller (and same Type I error)	B2 $\sqrt{ }$	2	This answer: B2. "B because sample bigger": B1. [SR: Partial answer: B1]
9	(a)	$\begin{aligned} & \hline n p>5 \text { and } n q>5 \\ & 0.75 n>5 \text { is relevant } \\ & n>20 \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	3	Use either $n q>5$ or $n p q>5$ [SR: If M0, use $n p>5$, or " $n=20$ " seen: M1] Final answer $n>20$ or $n \geq 20$ only
	(b)	(i) $\begin{aligned} & 70.5-\mu=1.75 \sigma \\ & \mu-46.5=2.25 \sigma \end{aligned}$ Solve simultaneously $\begin{aligned} & \mu=60 \\ & \sigma=6 \end{aligned}$	M1 A1 B1 M1 A1 $\sqrt{ }$ A1 $\sqrt{ }$	6	Standardise once, and equate to Φ^{-1}, \pm cc Standardise twice, signs correct, cc correct Both 1.75 and 2.25 Correct solution method to get one variable μ, a.r.t. 60.0 or ± 154.5 σ, a.r.t. 6.00 [Wrong cc (below): A1 both] [SR: $\sigma^{2}:$ M1A0B1M1A1A0]
		$\text { (ii) } \begin{array}{ll} n p=60, n p q=36 \\ & q=36 / 60=0.6 \\ & p=0.4 \\ & n=150 \end{array}$	M1dep depM1 A1 $\sqrt{ }$ A1 $\sqrt{ }$	4	$n p=60$ and $n p q=6^{2}$ or 6 Solve to get q or p or n $p=0.4 \sqrt{ }$ on wrong cc or z $n=150 \sqrt{ }$ on wrong cc or z

$\begin{array}{cc|ccccc|} & & \sigma & \mu & q & p(\pm 0.01) & n \\$\cline { 3 - 7 } 70.5 \& 46.5 \& 6 \& 60 \& 0.6 \& 0.4 \& 150
 \& \& \& $\left.\begin{array}{c}60.062\end{array} \\ 71 & 46 & 6.25 & 5 & 0.6504 & 0.3496 & 171.8 \\ & & & 60.562\end{array}\right)$

