4725 Further Pure Mathematics 1

- **B**1 Two elements correct **B1** All four elements correct 2 (ii) EITHER **B**1 Both diagonals correct **B1** Divide by determinant 2 ORSolve sim. eqns. 1st column correct **B**1 2nd column correct **B1** 2 (i) **B1** Correct modulus **B1** 0.927 or 53.1° Correct argument, any equivalent form 2 Circle centre A(3, 4)**B**1 (ii)(a) Through O, allow if centre is (4, 3)**B**1 2 A(3, 4)(b) **B1** Half line with +ve slope **B**1 Starting at (3, 0)**B**1 Parallel to OA, (implied by correct arg shown) 3 3 (i) **M**1 Common denominator of (r + 1)! or r!(r + 1)!(r+1)!
 - (ii) $1 \frac{1}{(n+1)!}$ M1 Express terms as differences using (i)

 A1 At least 1st two and last term correct

 M1 Show pairs cancelling

 A1 Correct answer a.e.f.

B1

Establish result is true, for n = 1 (or 2 or 3)

M1 Attempt to multiply A and Aⁿ, or vice versa
M1 Correct process for matrix multiplication
A1 Obtain 3ⁿ⁺¹, 0 and 1
A1 Obtain ½(3ⁿ⁺¹ – 1)
A1 Statement of Induction conclusion, only if 5 marks earned, but may be in body of working

5		M1 M1	Express as difference of two series Use standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
	7	M1 A1	Attempt to factorise At least factor of $n(n + 1)$
	$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
	12	6	
6 (i)	3 – i	B1 1	Conjugate stated
(ii)	EITHER	M1	Use sum of roots
()		A1	Obtain correct answer
		M1	Use sum of pairs of roots
		A1	Obtain correct answer
		M 1	Use product of roots
	a = -8, $b = 22$, $c = -20$	A1	Obtain correct answers
	O.P.	<u>6</u>	A44
	OR	M1	Attempt to find a quadratic factor Obtain correct factor
		A1 M1	
	a = -8, $b = 22$, $c = -20$		Expand linear and quadratic factors 1A1 Obtain correct answers
	OR	3.54	
		M1	Substitute 1 imaginary & the real root into equ
		M1 M1	Equate real and imaginary parts
	a = -8, b = 22, c = -20		Attempt to solve 3 eqns. 1A1 Obtain correct answers
	<i>u</i> 8, <i>v</i> - 22, <i>c</i> 20	AIA	IAI Obtain correct answers
7 (i)		B1 1	Enlargement (centre <i>O</i>) scale factor 6
(ii)		B1	Reflection
` '		B 1	Mirror line is $y = x$
		2	•
(iii)		B1	Stretch in <i>y</i> direction
` '		B1 2	Scale factor 6, must be a stretch
(iv)		B1	Rotation
		B1 2	36.9° clockwise or equivalent

8	$\alpha + \beta = -k$	B1 State or use correct value	
	$\alpha\beta = 2k$	B1 State or use correct value	
		M1 Attempt to express sum of terms of $\alpha + \beta$, $\alpha\beta$	new roots in
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1 Obtain correct expression	
	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1 Obtain correct answer a.e.	f.
	$\alpha'\beta'=1$	B1 Correct product of new ro	ots seen
	$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft Obtain correct answer, mu	st be an eqn.
	-	7	
		Alternative for last 5 mark	S
		M1 Obtain expression for $u =$	$\frac{\alpha}{\beta}$ in terms of k a
		α or k and β	
		A1 Obtain a correct expressio	n
		A1 rearrange to get α in term	s of u
		M1 Substitute into given equa	tion
		A1 Obtain correct answer	
(i)		M1 Attempt to equate real and of $(x + iy)^2$ and $5 + 12i$	imaginary parts
	$x^2 - y^2 = 5$ and $xy = 6$	A1 Obtain both results	
	•	M1 Eliminate to obtain a quad	ratic in x^2 or y^2
	$\pm (3 + 2i)$	M1 Solve a 3 term quadratic &	
	(-)	A1 Obtain correct answers as	
		5	1
(ii)	5 – 12i	B1B1 Correct real and imaginary 2	parts
(iii)		M1 Attempt to solve a quadra	ic equation
()	$x^2 = 5 \pm 12i$	A1 Obtain correct answers	•
	$x = \pm (3 \pm 2i)$ $x = \pm (3 \pm 2i)$	A1A1 Each pair of correct answers	vers a e f
	(===1)	4	w.v.1.
		4	

10 (i)	M1 Find value of det AB A1 Correct value 2 seen 2
(ii)	M1 Show correct process for adjoint entries A1 Obtain at least 4 correct entries in adjoint B1 Divide by their determinant
$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6 - 3a & a - 6 \end{pmatrix}$	A1 Obtain completely correct answer
(iii) EITHER $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	M1 State or imply $(AB)^{-1} = B^{-1}A^{-1}$ A1 Obtain $B^{-1} = (AB)^{-1} \times A$ M1 Correct multiplication process seen A1 Obtain three correct elements A1 All elements correct
OR	M1 Attempt to find elements of B A1 All correct M1 Correct process for B ⁻¹ A1 3 elements correct A1 All elements correct