

GCE

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2008

3890-2/7890-2/MS/R/08

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This report on the Examination provides information on the performance of candidates which it is hoped will be useful to teachers in their preparation of candidates for future examinations. It is intended to be constructive and informative and to promote better understanding of the syllabus content, of the operation of the scheme of assessment and of the application of assessment criteria.

Reports should be read in conjunction with the published question papers and mark schemes for the Examination.

OCR will not enter into any discussion or correspondence in connection with this Report.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/ContentPage

4721 Core Mathematics 1	1
4722 Core Mathematics 2	6
4723 Core Mathematics 3	10
4724 Core Mathematics 4	13
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	21
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	31
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	38
4732 Probability & Statistics 1	42
4733 Probability & Statistics 2	46
4734 Probability & Statistics 3	487
4735 Statistics 4	510
4736 Decision Mathematics 1	543
4737 Decision Mathematics 2	598
Grade Thresholds	643

- 1 (i) n = -2**B1** 1 **B**1 1
 - **M1** $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or (iii)

 $4 \times \sqrt{4}$ with brackets correct if used

2 (i) $y = (x \pm 2)^2$ **M1**

 $y = (x-2)^2$ **A1** 2

A1 2

- $y = -(x^3 4)$ **B1** 1
- $\sqrt{2 \times 100} = 10\sqrt{2}$ 3 (i) **B**1 1
 - (ii) $\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$ **B1**
- 1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ **M**1 (iii) $10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$ **A1** 2
- $y = x^{\overline{2}}$ $2y^2 - 7y + 3 = 0$ M1* Use a substitution to obtain a quadratic or

factorise into 2 brackets each containing $x^{\frac{1}{2}}$

(2y-1)(y-3)=0M1depCorrect method to solve a quadratic $y = \frac{1}{2}, y = 3$ **A1**

M1 Attempt to square to obtain *x* $x = \frac{1}{4}, x = 9$ **A1**

SR If first M1 not gained and 3 and ½ given as final answers, award B1 5

A1
$$kx^{-\frac{1}{2}}$$

M1 Correct substitution of
$$x = 9$$
 into their

A1
$$\frac{7}{3}$$
 only

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{7}{3}$$

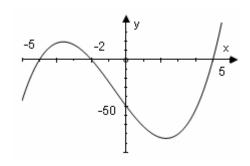
6 (i) (x-5)(x+2)(x+5)

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$

 $=4\left(\frac{1}{\sqrt{9}}\right)+1$

$$=(x^2-3x-10)(x+5)$$

$$= x^3 + 2x^2 - 25x - 50$$


 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$ **B**1

M1 Attempt to multiply a quadratic by a linear factor

A1

3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1√ (0, -50) labelled or indicated on y-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated

on x-axis and no other x- intercepts

3

8 < 3x - 2 < 11

$$\frac{10}{3} < x < \frac{13}{3}$$

M1 2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

(ii) $x(x+2) \ge 0$

 $x \ge 0, x \le -2$

3

M1 Correct method to solve a quadratic

A1

Correct method to solve inequality **M1**

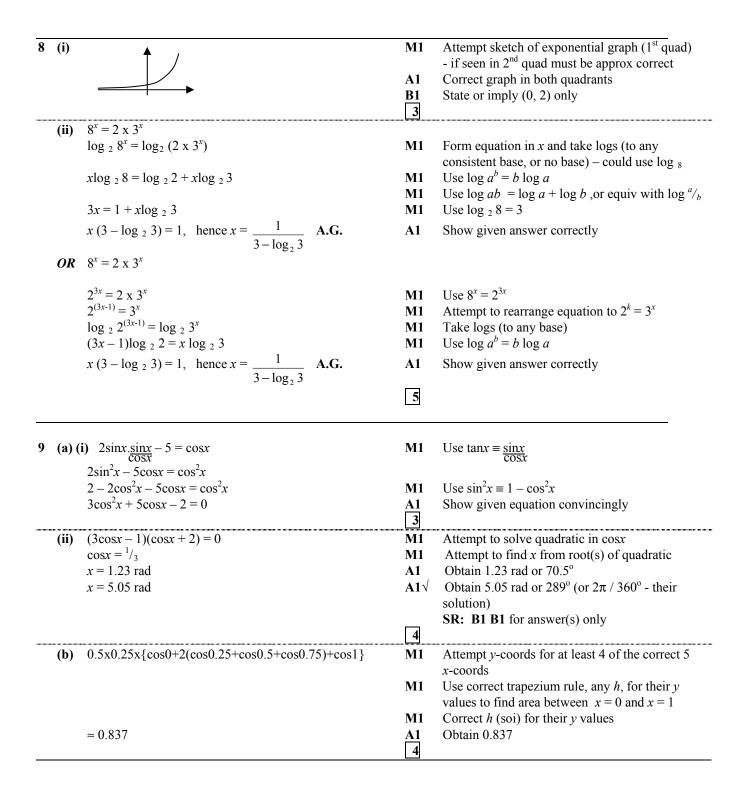
A1

4

8 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
.,	dx	B1	Fully correct
		2	
(ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
	3-2k+1=0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
	k = 2	A1√ 3	
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2 y}{dx^2}$ and looks at sign
	When $x = 1$, $\frac{d^2y}{dx^2} > 0$: min pt	A1	States minimum CWO
	u.	2	
(iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
	(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
	$x = \frac{1}{3}, x = 1$		
	$x = \frac{1}{3}$	A1	WWW at any stage
	3	3	

(i)		B 1	$(x-2)^2$ and $(y-1)^2$ seen
	$(x-2)^2 + (y-1)^2 = 100$	B 1	$(x \pm 2)^2 + (y \pm 1)^2 = 100$
	$x^2 + y^2 - 4x - 2y - 95 = 0$	B 1	correct form
		3	
(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
	$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y) obtained
	$k = 1 + \sqrt{91}$	A1	cao
		3	
(iii)	distance from $(-3, 9)$ to $(2, 1)$		2
	$=\sqrt{(2-3)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
	$=\sqrt{25+64}$	A1	
	$=\sqrt{89}$		
	$\sqrt{89}$ < 10 so point is inside	B1	compares their distance with 10 and makes consistent conclusion
		3	
(iv)	gradient of radius $=\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{4}{3}$	A1	oe
	gradient of tangent $=-\frac{3}{4}$	B 1√	oe
	$y-9=-\frac{3}{4}(x-8)$	M1	correct equation of straight line through (8, 9).
	4		any non-zero gradient
	$y - 9 = -\frac{3}{4}x + 6$		y
	$y = -\frac{3}{4}x + 15$	A1	oe 3 term equation

10 (i)	$2(x^2-3x)+11$	B1	p = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	B 1√	
		B1√ 2	
(iii)	$36-4\times2\times11$	M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	cao
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1de	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1


= 20

1)2	$(2-3x)^6 = 2^6 + 6.2^5.(-3x) + 15.2^4.(-3x)^2$	M1	Attempt (at least) first two terms - product of binomial coefficient and powers of 2 and (-
)3 <i>x</i>	$= 64 - 576x + 2160x^2$	A1 M1	Obtain $64 - 576x$ Attempt third term - binomial coefficient and powers of 2 and (-) $3x$ Obtain $2160x^2$
	OR		M1 A1 A1 A1	Attempt expansion involving all 6 brackets Obtain 64 Obtain $-576x$ Obtain $2160x^2$
	SR	if the expansion is attempted in descending order, and the $4860x^4$, $-2916x^5$, $729x^6$	required	d terms are never seen, then B1 B1 B1 for
2	(i)	$u_2 = \frac{2}{3}$ $u_3 = \frac{-1}{2}$ $u_4 = 3$	B1 B1√ 3	Obtain correct u_2 $\mathbf{B1}$ Obtain correct u_3 from their u_2 Obtain correct u_4 from their u_3
	(ii)	sequence is periodic / cyclic / repeating	B1 1	Any equivalent comment
3	(i)	$\frac{1}{2} \times 8^2 \times \theta = 48$ Hence $\theta = 1.5$ radians	M1 A1 2	State or imply (½) $8^2\theta = 48$ Obtain $\theta = 1.5$ (or 0.477π), or equiv
	(ii)	area = $48 - \frac{1}{2} \times 8^2 \times \sin 1.5$ = $48 - 31.9$ = 16.1	M1* M1d* A1 3	Attempt area of Δ using (½) $8^2 \sin \theta$ Attempt 48 – area of Δ Obtain 16.1 cm ²
4	(i) OR	f(3) = 27a - 36 - 21a + 12 = 0 $6a = 24$ $a = 4$	M1* M1d* A1	Attempt f(3) Equate attempt at f(3) to 0 and attempt to solve Obtain $a = 4$
	OK		M1* M1d* A1	Attempt complete division / matching coeffs Equate remainder to 0 Obtain $a = 4$
	(ii)	f(-2) = -32 - 16 + 56 + 12	M1	Attempt f(-2)

2

A1 $\sqrt{}$ Obtain 20 (or 6a - 4, following their a)

5 (i)	$\int x \mathrm{d}y = \int ((y-3)^2 - 2) \mathrm{d}y$	B1	Show $x = y^2 - 6y + 7$ convincingly
	$=\int (y^2 - 6y + 7) dy$ A.G.	B 1	State or imply that required area = $\int x dy$
	$3 + \sqrt{(2+2)} = 5$, $3 + \sqrt{(14+2)} = 7$	B1	Use $x = 2$, 14 to show new limits of $y = 5$, 7
(ii)	$\left[\frac{1}{3}y^3 - 3y^2 + 7y\right]_5^7$	M1	Integration attempt, with at least one
term	$= (^{343}/_3 - 147 + 49) - (^{125}/_3 - 75 + 35)$ $= 16^{1}/_3 - 1^{2}/_3$ $= 14^{2}/_3$	A1 M1 A1 4	correct All three terms correct Attempt $F(7) - F(5)$ Obtain $14^{2}/_{3}$, or exact equiv
6 (i)	$ABC = 360 - (150 + 110) = 100^{\circ}$ A.G.	B1	Show convincingly that angle ABC is 100°
(ii)	$CA^2 = 15^2 + 27^2 - 2 \times 15 \times 27 \times \cos 100^0$ = 1094.655	M1	Attempt use of correct cosine rule
	CA = 33.1	A1 2	Obtain 33.1 km
(iii	$\frac{\sin C}{15} = \frac{\sin 100}{33.1} \qquad \text{or} \qquad \frac{\sin A}{27} = \frac{\sin 100}{33.1}$	M1	Attempt use of sine rule to find angle <i>C</i> or <i>A</i>
	$C = 26.5^{\circ}$ $A = 53.5^{\circ}$ Hence bearing is 263°	A1√ A1 A1√	(or equiv using cosine rule) Correct unsimplified eqn, following their CA Obtain $C = 26.5^{\circ}$ or $A = 53.5^{\circ}$ (allow 53.4°) Obtain 263 or 264 (or 290° – their angle $C/210$ + their angle A)
7 (a)	$\int (x^5 - x^4 + 5x^3) \mathrm{d}x$	M1	Expand brackets and attempt integration, or
	$= \frac{1}{6}x^6 - \frac{1}{5}x^5 + \frac{5}{4}x^4 \ (+c)$	A1 A1 B1	other valid integration attempt Obtain at least one correct term Obtain a fully correct expression For $+c$, and no \int or dx (can be given in (b)(i) if not given here)
(b)	(i) $-6x^{-3}(+c)$	M1 A1 2	Obtain integral of the form kx^{-3} Obtain $-6x^{-3}$ (+ c)
	(ii) $ \left[-6x^{-3} \right]_2^{\infty} $ $= \frac{3}{4}$	B1* B1d*	State or imply that $F(\infty) = 0$ (for kx^n , $n - 1$) Obtain $\frac{3}{4}$ (or equiv)

10 (i)	$u_{15} = 2 + 14 \times 0.5$	M1	Attempt use of $a + (n-1)d$
	= 9 km	<u>A1</u>	Obtain 9 km
		2	
(ii)	$u_{20} = 2 \times 1.1^{19} = 12.2$	B1	State, or imply, $r = 1.1$
		M1	Attempt u_{20} , using ar^{n-1}
	$u_{19} = 2 \times 1.1^{18} = 11.1$	A1	Obtain $u_{20} = 12.2$, and obtain $u_{19} = 11.1$
OR			
		B1	State, or imply, $r = 1.1$
		M1	Attempt to solve $ar^{n-1} = 12$
		A1	Obtain $n = 20$ (allow $n \ge 20$)
		3	,
(iii)	$2(1.1^n-1)$	B1	State or imply $S_N = \frac{2(1.1^n - 1)}{(1.1 - 1)}$
. ,	$\frac{2(1.1^n - 1)}{(1.1 - 1)} > 200$		$\frac{1}{(1.1-1)}$
	$1.1^n > 11$	M1	Link (any sign) their attempt at S_N (of a GP)
			to 200 and attempt to solve
	$n > \frac{\log 11}{\log 1.1}$	A1	Obtain 26, or 25.2 or better
	5	AI	, and the second
	n > 25.2 ie Day 26	<u>A1</u>	Conclude $n = 26$ only, or equiv eg Day 26
		4	
(iv)	swum = $2 \times 30 = 60 \text{ km}$	B1	Obtain 60 km, or 2 x 30km
	$run = \frac{1}{2} \times 30 \times (4 + 29 \times 0.5)$	M1	Attempt sum of AP, $d = 0.5$, $a = 2$, $n = 30$
	= 277.5 km		
	$cycle = 2(1.1^{30} - 1)$	M1	Attempt sum of GP, $r = 1.1$, $a = 2$, $n = 30$
	$\frac{(1.1-1)}{}$		
	= 329.0 km		
	total = 666 km	A1	Obtain 666 or 667 km
	tomi oto kili	4	Comm 600 01 00/ Km
		_ - 1	

1	<u>Eith</u>	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B 1	or equiv
		Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative
		Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord –3 indicated	A1 2	y-axis and positive x-axis
	(ii)	Show graph indicating attempt at reflection in x-axis	M1	with correct curvature and crossing each negative axis
		Show correct graph with <i>x</i> -coord -3 indicated and <i>y</i> -coord -4 indicated [SC: Incorrect curve earning M0 but both correct interceptions of the correct interception o	A1 A1 pts indic	cated B1]
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient Obtain $y - e^2 = 3e(x - e)$	A1 M1 A1√	or exact (unsimplified) equiv allowing approx values or equiv; following their gradient provided obtained by diffn attempt; allow approx
		Obtain $y = 3ex - 2e^2$	A1 6	values in terms of e now and in requested form
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant k ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4 Obtain at least one correct value	M1 A1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		Obtain two correct values and conclude appropriately	A1	0.4 0.3515 0.0485 113.8 noting sign change or showing $0.3 < f(0.3)$ and $0.4 > f(0.4)$ or showing gradients either side of 100
			3	

```
(iii) Obtain correct first iterate
                                                                               B1
          Carry out correct process
                                                                               M1
                                                                                       finding at least 3 iterates in all
          Obtain 0.3553
                                                                                       answer required to exactly 4 dp
                                                                               A1
                                                                                3
                                  [0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0.35\overline{534} \rightarrow 0.35531;
                                    0.35 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow 0.35532 (\rightarrow 0.35531);
                                    0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.35529 \rightarrow 0.35532
          Obtain expression of form \frac{a \tan \alpha}{b + c \tan^2 \alpha}
5 (a)
                                                                               M1
                                                                                       any non-zero constants a, b, c
          State correct \frac{2 \tan \alpha}{1 - \tan^2 \alpha}
                                                                               A1
                                                                                       or equiv
          Attempt to produce polynomial equation in \tan \alpha
                                                                               M1
                                                                                       using sound process
                                                                               A1
                                                                                        \tan \alpha = \pm \sqrt{\frac{4}{5}}
          Obtain at least one correct value of \tan \alpha
                                                                                       allow 42 or greater accuracy; allow 0.73
          Obtain 41.8
                                                                               A1
                                                                                       allow 138 or greater accuracy
          Obtain 138.2 and no other values between 0 and 180
                                                                               A1
          [SC: Answers only
                                        41.8 or ... B1;
                                                                 138.2 or ...
                                                                               and no others B1]
                                                                                6
    (b)(i) State \frac{7}{6}
                                                                               B1
                                                                                1
       (ii) Attempt use of identity linking \cot^2 \beta and \csc^2 \beta
                                                                               M1
                                                                                       or equiv retaining exactness; condone sign
                                                                                          errors
          Obtain \frac{13}{36}
                                                                               A1
                                                                                       or exact equiv
                                                                               2
          Integrate k_1 e^{nx} to obtain k_2 e^{nx}
6
                                                                               M1
                                                                                       any constants involving \pi or not; any n
          Obtain correct indefinite integral of their k_1e^{nx}
                                                                               A1
          Substitute limits to obtain \frac{1}{6}\pi(e^3-1) or \frac{1}{6}(e^3-1)
                                                                                       or exact equiv perhaps involving e<sup>0</sup>
                                                                               A1
          Integrate k(2x-1)^n to obtain k'(2x-1)^{n+1}
                                                                               M1
                                                                                       any constants involving \pi or not; any n
          Obtain correct indefinite integral of their k(2x-1)^n
                                                                               A1
                                                                                       or exact equiv
          Substitute limits to obtain \frac{1}{18}\pi or \frac{1}{18}
                                                                               A1
                                                                                       for y = e^{3x} and/or y = (2x-1)^4
          Apply formula \int \pi y^2 dx at least once
                                                                               В1
          Subtract, correct way round, attempts at volumes
                                                                               M1
                                                                                       allow with \pi missing but must involve
y^2
          Obtain \frac{1}{6}\pi e^3 - \frac{2}{9}\pi
                                                                               A1
                                                                                       or similarly simplified exact equiv
                                                                               9
          State A = 42
                                                                               В1
          State k = \frac{1}{9}
                                                                               B1
                                                                                       or 0.11 or greater accuracy
          Attempt correct process for finding m
                                                                               M1
                                                                                       involving logarithms or equiv
          Obtain \frac{1}{9} \ln 2 or 0.077
                                                                               A1
                                                                                       or 0.08 or greater accuracy
                                                                                4
                                                                               M1
    (ii)
          Attempt solution for t using either formula
                                                                                       using correct process (log'ms or T&I or ...)
                                                                                       or greater accuracy; allow 11.3 \pm 0.1
          Obtain 11.3
                                                                               A1
                                                                               2
    (iii) Differentiate to obtain form Be^{mt}
                                                                               M1
                                                                                       where B is different from A
          Obtain 3.235e<sup>0.077t</sup>
                                                                               A1√
                                                                                       or equiv; following their A and m
          Obtain 47.9
                                                                                       allow 48 or greater accuracy
                                                                               A1
                                                                               3
```

8 (i)	Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or	D.1	
	$\cos \theta \cos 60 - \sin \theta \sin 60$	B 1	
	Attempt expansion of both with exact numerical values attempted	M1	and with $\cos 60 \neq \sin 60$
	Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	A1	or exact equiv
	2 43 3110 + 2 6030	3	or exact equiv
(ii)	Attempt correct process for finding <i>R</i>	M1	whether exact or approx
()	Attempt recognisable process for finding α	M1	allowing sin / cos muddles
	Obtain $\sqrt{7}\sin(\theta+70.9)$	A1	allow 2.65 for R; allow 70.9 ± 0.1 for α
		3	,
(iii)	Attempt correct process to find any value of θ + their α	M1	
()	Obtain any correct value for $\theta + 70.9$	A1	-158, -22, 202, 338,
	Attempt correct process to find θ + their α in 3rd quadrant	M1	or several values including this
	Obtain 131	A1	or greater accuracy and no other
	[SC for solutions with no working shown: Correct an	_	aly B4; 131 with other answers B2]
		4	
9 (i)	Attempt use of quotient rule	*M1	or equiv; allow u / v muddles
	Obtain $\frac{75-15x^2}{(x^2+5)^2}$	A 1	on (uncinculified) conicul this N/1 A 1
	Obtain $\frac{1}{(x^2+5)^2}$	A1	or (unsimplified) equiv; this M1A1
			available at any stage of question
	Equate attempt at first derivative to zero and rearrange to		, ,
	solvable form	M1	dep *M
	Obtain $x = \sqrt{5}$ or 2.24	A1	or greater accuracy
	Recognise range as values less than y-coord of st pt	M1	allowing < here
	Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	A1	any notation; with \leq now; any exact equiv
		6	
(ii)	State $\sqrt{5}$	B1 √	following their x-coord of st pt; condone
			answer $x \ge \sqrt{5}$ but not inequality with k
		1	1
(iii)	Equate attempt at first derivative to -1 and		
` '	attempt simplification	*M1	and dependent on first M in part (i)
	Obtain $x^4 - 5x^2 + 100 = 0$	A1	or equiv involving 3 non-zero terms
	Attempt evaluation of discriminant or equiv	M1	dep *M
	Obtain -375 or equiv and conclude appropriately	A1	•
	1 11 1	4	

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
		3x-2		2010012
	(b)	For correct leading term <i>x</i> in quotient	<u>2</u> B1	Identity method
	(6)	For evidence of correct division process	M1	M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$
		Quotient = $x - 2$	A1	M1: $Q = ax + b$ or $x + b$, $R = cx + d \& \ge 2$ ops
				[N.B. If $Q = x + b$, this \Rightarrow 1 of the 2 ops]
		Remainder = $x - 3$	A1	A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
		du	4	
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /- \int g(x) dx$
		$\frac{x^5}{5}\ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (\mathrm{d}x)$	A1	
		$\frac{x^5}{5} \ln x - \frac{x^5}{25}$	A1	
		Correct method with the limits	dep*1	M1 Decimals acceptable here
		$\frac{4e^5}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
		25 25 15 W (Not 10)		recept equivilacis, fixe terms umargumated
			5	
3	(i)	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy \frac{dy}{dx} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*l	M1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
		***************************************		could imply "=0" on 1st line
			3	2
	(ii)(a	A)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$	B1	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$
		Clear indication why $y = 0$ is not acceptable	B1 2	Substituting $y = 2x \rightarrow B0, B0$
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
		Produce $-2x^3 = 2 \text{ or } y^3 = -8$	A1	AEF
		(-1, -2) or $x = -1, y = -2$ only	A1 3	

4	(i)	For (either point) + t (difference between vectors) $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{k})$	M1) A1	't' can be 's', ' λ ' etc. 'r' must be 'r' but need not be bold Check other formats, e.g. $ta + (1-t)b$
			2	
	(ii)	Consider scalar product = 0 dep	1 N.I *M1	B.This *M1 is dep on M1 being earned in (i)
		Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$		
		Subst their t into their equation of AB M1		
		Obtain $\frac{1}{6}(16i + 13j + 19k)$ AEF A1	Ac	cept decimals if clear
		5		
5	(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
		$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
		Product = $1-x+\frac{1}{2}x^2$ ignoring x^3 etc	B 1	AG ; with (at least) 1 intermediate step (cf x^2)
			5	
	(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B1	
		$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	B1	
		$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$	B1	AG
			3	
6	(i)	Produce at least 2 of the 3 relevant equations in t and s Solve for t and s (t, s) = (4, -3) AEF	M1 M1 *A1	1 + 2t = 12 + s, 3t = -4s, -5 + 4t = 5 - 2s
		Subst $(4, -3)$ into suitable equation(s) & show consistency		
			4	N.B. Intersection coords not asked for
	(ii)	Method for finding magnitude of any vector	*M1	Expect $\sqrt{29}$ and $\sqrt{21}$
		Method for finding scalar product of any 2 vectors	*M1	Expect -18
		Using $\cos \theta = \frac{\mathbf{a.b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	dep*	M1 Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$
		137 (136.8359) or 43.2(43.164)	A1 4	2.39 (2.388236) or 0.753(0.75335) rads

7	(i)	Correct (calc) method for dealing with $\frac{1}{\sin x}$ or $(\sin x)^{-1}$	M1	
		Obtain $-\frac{\cos x}{\sin^2 x}$ or $-(\sin x)^{-2}\cos x$	A1	
		Show manipulation to $-\csc x \cot x$ (or vice-versa)	A1 3	WWW AG with ≥ 1 line intermed working
	(ii)	Separate variables, $\int (-)\frac{1}{\sin x \tan x} dx = \int \cot t dt$	M1	or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$
		Style: For the M1 to be awarded, dx and dt must appear of	on corre	ect sides or there must be sign on both sides
		$\int -\csc x \cot x dx = \csc x (+c)$	A1	or $\int \csc x \cot x dx = -\csc x$
		$\int \cot t dt = \ln \sin t \text{or} \ln \left \sin t \right \tag{+e}$	B 1	or $\int -\cot t dt = -\ln \sin t \text{ or } -\ln \sin t $
		Subst $(t,x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$ into their equation containing 'c'	M1	and attempt to find 'c'
		$\csc x = \ln \sin t + 2 \text{ or } \ln \left \sin t \right + 2$	A1	WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2
			5	o de la companya de
8	(i)	A(t+1) + B = 2t	M1	Beware: correct values for A and/or B can be
		A = 2 $B = -2$	A1 A1	obtained from a wrong identity <u>Alt method:</u> subst suitable values into given
			3	expressions
	(ii)	Attempt to connect dx and dt dx = t dt s.o.i. AEF	M1 A1	But not just $dx = dt$. As AG , look carefully.
		$x + \sqrt{2x - 1} \to \frac{t^2 + 1}{2} + t = \frac{(t + 1)^2}{2}$ s.o.i.	B1	Any wrong working invalidates
		$\int \frac{2t}{(t+1)^2} dt$	A1	AG WWW The 'd t ' must be present
			4	
	(iii)	$\int \frac{1}{t+1} \mathrm{d}t = \ln(t+1)$	B1	Or parts $u = 2t$, $dv = (t+1)^{-2}$ or subst $u = t+1$
		$\int \frac{1}{(t+1)^2} \mathrm{d}t = -\frac{1}{t+1}$	B1	
		Attempt to change limits (expect 1 & 3) and use $f(t)$	M1	$\underline{\text{or}}$ re-substitute and use 1 and 5 on $g(x)$
		$\ln 4 - \frac{1}{2}$	A1	AEF (like terms amalgamated); if A0 A0 in (i),
			4	then final A0

9 (i)	$A: \theta = \frac{1}{2}\pi (\text{accept } 90^\circ)$	B1	
	$B: \theta = 2\pi (\text{accept } 360^\circ)$	B2	SR If B0 awarded for point B, allow B1 SR for
		3	any angle s.t. $\sin \theta = 0$
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1	or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B1	
	$2 + 2 \cos 2\theta = 4 \cos^2 \theta$ with ≥ 1 line intermed work	*B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2 + 2\cos 2\theta} \qquad \text{s.o.i.}$	A1	This & previous line are interchangeable
	$= \sec \theta$	dep*	A1 WWW AG
(iii	Equating $\sec \theta$ to 2 and producing at least one value of θ		degrees or radians
	$(x =) -\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$ $(y =) -2\sqrt{3}$	A1	'Exact' form required
	$(y =) - 2\sqrt{3}$	A1 3	'Exact' form required

4725 Further Pure Mathematics 1

- **B**1 Two elements correct **B1** All four elements correct 2 (ii) EITHER **B**1 Both diagonals correct **B1** Divide by determinant 2 ORSolve sim. eqns. 1st column correct **B**1 2nd column correct **B1** 2 (i) **B1** Correct modulus **B1** 0.927 or 53.1° Correct argument, any equivalent form 2 Circle centre A(3, 4)**B**1 (ii)(a) Through O, allow if centre is (4, 3)**B**1 2 A(3, 4)(b) **B1** Half line with +ve slope **B1** Starting at (3, 0)**B**1 Parallel to OA, (implied by correct arg shown) 3
- 3 (i) $\frac{r}{(r+1)!}$ M1 Common denominator of (r+1)! or r!(r+1)! A1 Obtain given answer correctly
 - (ii) $1 \frac{1}{(n+1)!}$ M1 Express terms as differences using (i)

 A1 At least 1st two and last term correct

 M1 Show pairs cancelling

 A1 Correct answer a.e.f.
- 4

 B1 Establish result is true, for n = 1 (or 2 or 3)

 M1 Attempt to multiply **A** and **A**ⁿ, or vice versa

 M1 Correct process for matrix multiplication

 A1 Obtain 3^{n+1} , 0 and 1

 A1 Obtain $\frac{1}{2}(3^{n+1} 1)$ A1 Statement of Induction conclusion, only if 5 marks earned, but may be in body of working

6

5		M1 M1	Express as difference of two series Use standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1)$	A1	Correct unsimplified answer
	7	M1 A1	Attempt to factorise At least factor of $n(n + 1)$
	$\frac{1}{12}n(n+1)(3n+2)(n-1)$	A1	Obtain correct answer
	12	6	
6 (i)	3 – i	B1 1	Conjugate stated
(ii)	EITHER	M1	Use sum of roots
()		A1	Obtain correct answer
		M1	Use sum of pairs of roots
		A1	Obtain correct answer
		M 1	Use product of roots
	a = -8, $b = 22$, $c = -20$	A1 6	Obtain correct answers
	OR	M1	Attempt to find a quadratic factor
		A1	Obtain correct factor
		M1	Expand linear and quadratic factors
	a = -8, b = 22, c = -20 OR		1A1 Obtain correct answers
		M1	Substitute 1 imaginary & the real root into eqr
		M 1	Equate real and imaginary parts
		M 1	Attempt to solve 3 eqns.
	a = -8, $b = 22$, $c = -20$	A1A :	1A1 Obtain correct answers
(i)		B1 1	Enlargement (centre <i>O</i>) scale factor 6
(ii)		B1	Reflection
()		B1	Mirror line is $y = x$
		2	
(iii)		B1	Stretch in <i>y</i> direction
` '		B1 2	Scale factor 6, must be a stretch
(iv)		B1	Rotation
		B1 2	36.9° clockwise or equivalent

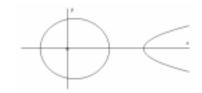
$\alpha + \beta = -k$ $\alpha \beta = 2k$	B1	State or use correct value
$\alpha\beta = 2k$		
- 1-	B1	State or use correct value
	M1	Attempt to express sum of new roots in terms of $\alpha + \beta$, $\alpha\beta$
$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	A1	Obtain correct expression
$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$	A1	Obtain correct answer a.e.f.
$\alpha'\beta'=1$	B 1	Correct product of new roots seen
$x^2 - \frac{1}{2}(k-4)x + 1 = 0$	B1ft	Obtain correct answer, must be an eqn.
_	7	
		Alternative for last 5 marks
	M1	Obtain expression for $u = \frac{\alpha}{\beta}$ in terms of k a
		α or k and β
	A1	Obtain a correct expression
	A1	rearrange to get α in terms of u
	M 1	Substitute into given equation
	A1	Obtain correct answer
	M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $5 + 12i$
$x^2 - y^2 = 5$ and $xy = 6$	A1	Obtain both results
•	M1	Eliminate to obtain a quadratic in x^2 or y^2
$\pm (3 + 2i)$		Solve a 3 term quadratic & obtain x or y
		Obtain correct answers as complex nos.
	5	•
5 – 12i	<u>B1</u> B1	Correct real and imaginary parts
	M1	Attempt to solve a quadratic equation
$x^2 = 5 \pm 12i$	A1	Obtain correct answers
$x^2 = 5 \pm 12i$ $x = \pm (3 \pm 2i)$	A1 A1A1	Obtain correct answers Each pair of correct answers a.e.f.
. <u>•</u> -	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$ $\alpha'\beta' = 1$ $x^2 - \frac{1}{2}(k-4)x + 1 = 0$ $x^2 - y^2 = 5 \text{ and } xy = 6$ $= (3+2i)$	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{1}{2}(k-4)$ $\alpha'\beta' = 1$ $x^2 - \frac{1}{2}(k-4)x + 1 = 0$ B1ft 7 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1

10 (i)	M1 Find value of det AB A1 Correct value 2 seen 2
(ii)	M1 Show correct process for adjoint entries A1 Obtain at least 4 correct entries in adjoint B1 Divide by their determinant
$(\mathbf{AB})^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & 6 - 3a & a - 6 \end{pmatrix}$	A1 Obtain completely correct answer
(iii) EITHER $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ -6 & 2 & -2 \end{pmatrix}$	M1 State or imply $(AB)^{-1} = B^{-1}A^{-1}$ A1 Obtain $B^{-1} = (AB)^{-1} \times A$ M1 Correct multiplication process seen A1 Obtain three correct elements A1 All elements correct
OR	M1 Attempt to find elements of B A1 All correct M1 Correct process for B ⁻¹ A1 3 elements correct A1 All elements correct

4726 Further Pure Mathematics 2

Write as $\frac{A}{x-2a} + \frac{Bx+C}{x^2+a^2}$ Get $2ax = A(x^2+a^2) + (Bx+C)(x-2a)$ 1 Choose values of x and/or equate coeff. Get $A = \frac{4}{5}$, $B = \frac{-4}{5}$, $C = \frac{2}{5}a$

Accept C=0 **M1**


A1√ Follow-on for *C*=0

Must lead to at least one of their A,B,CM1For two correct from correct working only **A1**

For third correct **A1**

5

2 Get (4,0), (3,0), (-2,0) only **B1** Get $(0,\sqrt{5})$ as "maximum" **B1**

Meets x-axis at 90° at all crossing points **B1**

Use $-2 \le x \le 3$ and $x \ge 4$ only **B1**

Symmetry in Ox **B1**

5

Quote/derive $dx = \frac{2}{1+t^2} dt$ 3 **B1**

Replace all x and dx from their expressions

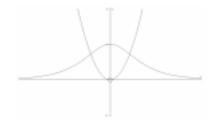
Tidy to $2/(3t^2+1)$

Get $k \tan^{-1}(At)$

Get $k = \frac{2}{3}\sqrt{3}$, $A = \sqrt{3}$ Use limits correctly to $^2/_9$ $\sqrt{3}\pi$

Not dx=dt; ignore limits **M**1

Not $a/(3t^2+1)$ **A1**


Allow A=1 if from $p/(t^2+1)$ only M1

Allow $k=a/\sqrt{3}$ from line 3; AEEF A1√

A1 AEEF 6

4 (i)

B1 Correct $y = x^2$

B1 Correct shape/asymptote **B1**

Crossing (0,1)

Define sech $x = 2/(e^x + e^{-x})$ Equate their expression to x^2 and attempt to simplify Clearly get A.G.

3 **AEEF**

B1 **M1**

(iii) Cobweb

A1 3

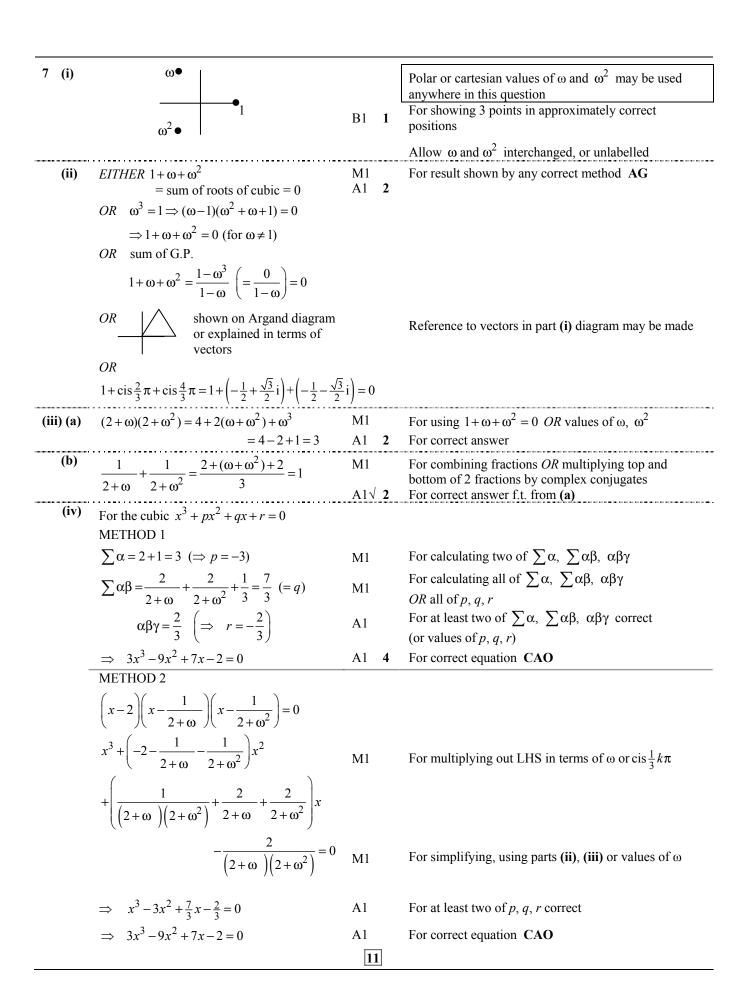
B1

B1 Only from cobweb

Values > and then < root

5	(i)	Factorise to $\tan^{n-2}x(1+\tan^2x)$	B1	Or use $\tan^n x = \tan^{n-2} x \cdot \tan^2 x$
		Clearly use $1+\tan^2 = \sec^2$	M1	Allow wrong sign
		Integrate to $\tan^{n-1}x/(n-1)$	A1	Quote or via substitution
		Use limits and tidy to A.G.	A1 4	Must be clearly derived
	(ii)	Get $3(I_4 + I_2) = 1$, $I_2 + I_0 = 1$	B1	Write down one correct from reduction formula
		Attempt to evaluate I_0 (or I_2)	M1	I_2 = $a \tan x + b$, $a,b \neq 0$
		Get $\frac{1}{4}\pi$ (or $1 - \frac{1}{4}\pi$)	A1	-2
		Replace to $\frac{1}{4}\pi - \frac{2}{3}$	A1	
		•	4	
6	(i)	Attempt to use N-R of correct form with clear $f'(x)$ used	M1	
		Get 2.633929, 2.645672	A1	For one correct to minimum of 6 d.p.
			<u>A1</u> √	For other correct from their x_2 in correct NI
			3	
	(ii)	$\sqrt{7}$	<u>B1</u>	Allow ±
			1	
	(iii)	Get $e_1 = 0.14575$, $e_2 = 0.01182$	B1√	From their values
		Get $e_3 = 0.00008$	B1√	
		Verify both ≈ 0.00008	B1 3	From 0.000077 or 0.01182 ³ /0.14575 ²
7	(i)	Attempt quotient/product on bracket	M1	
		$Get -3/(2+x)^2$	A1	May be implied
		Use Formulae Booklet or derive from $\tanh y = (1-x)/(2+x)$	M1	Attempt $tanh^{-1}$ part in terms of x
		Get $\frac{-3}{(2+x)^2} \cdot \frac{1}{1-((1-x)/(2+x))^2}$	A1 √	From their results above
			4.1	
		Clearly tidy to A.G. Contain $f''(x) = 2/(1+2x)^2$	A1	
		Get f''(x) = $2/(1+2x)^2$	B1	cao
-			SC	Use reasonable ln definition M1 Get $y=\frac{1}{2}\ln((1-k)/(1+k))$ for $k=(1-x)/(1+2x)$ A1 Tidy to $y=\frac{1}{2}\ln(3/(1+2x))$ A1 Attempt chain rule M1 Clearly tidy to A.G.
				Clearly tidy to A.G. A1 Get $f''(x)$ B1
	(ii)	Attempt $f(0)$, $f'(0)$ and $f''(0)$	M1	From their differentiation
	(11)	Get tanh ⁻¹ ½, -1 and 2	M11 A1√	From their differentiation
		Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 \ (=\ln \sqrt{3})$	B1	Only
		Get $\ln\sqrt{3} - x + x^2$	A1	\(\text{iii}\)
		Set III 15 W · W	4	
				Use standard expansion from $\frac{1}{2}\ln 3 - \frac{1}{2}\ln (1+2x)$
			20	232 Sumana Orpanision from 72m3 72m(1+2x

8	(i)	Attempt to solve $r = 0$ Get $\alpha = \frac{1}{4}\pi$	M1 A1 2	From correct method; ignore others; allow θ
	(ii) ((a)Get $1 - \sin((2k+1)\pi - 2\theta)$ Expand as $\sin(A+B)$ Use k as integer so $\sin(2k+1)\pi = 0$,	M1 M1	Attempt $f(\frac{1}{2}(2k+1)\pi - \theta)$, leading to 2θ here Or discuss periodicity for general k
		And $\cos(2k+1)\pi = -1$	A1 3	Needs a clear explanation
	((b) Quote $\frac{1}{4}(2k+1)\pi$	B1	For general answer or 2 correct (ignore other answers given)
		Select or give $k = 0,1,2,3$	B1 2	For all 4 correct in $0 \le \theta < 2\pi$
roı	aghly	(iii)		B1 Correct shape; 2 branches only,
				as shown
			B1 B1 B1	Clear symmetry in correct rays Get max. $r = 2$ At $\theta = \sqrt[3]{4\pi}$ and $\sqrt[7]{4\pi}$; both required (allow correct answers not in $0 \le \theta < 2\pi$ here)
9	(i)	Attempt to use parts Divide out $x/(1+x)$ Correct answer	M1 M1	Two terms, one yet to be integrated Or use substitution
		$x\ln(1+x) - x + \ln(1+x)$ Limits to correct A.G.	A1 A1 4	
			SC SC	Quote $\int \ln x dx$ M1 Clear use of limits to A.G. A1 Attempt to diff ate by product rule Clear use of limits to A.G. A1
	(ii) ((a)Use sum of areas of rect.< Area under curve (between		
		limits 0 and 70) Areas = $1x$ heights = $1(\ln 2 + \ln 3 + \ln 70)$	B1 B1 2	Areas to be specified
	(b	Explain use of 69 Explain first rectangle	B1	Allow diagram or use of left shift of 1 unit
		Areas as above > area under curve	B1 B1 3	
	(c)	Show/quote $\ln 2 + \ln 3 + \ln 70 = \ln 70!$ Use $N = 69$, 70 in (i)	B1 M1	No other numbers; may be implied by 228.39 or 232.65 seen; allow 228.4, 232.6 or 232.7
		Get 228.3, 232.7	A1 3	


4727 Further Pure Mathematics 3

1 (a)(i)	e, r^3, r^6, r^9	M1	For stating e, r^m (any $m cdots 2$), and 2 other different
		A1 2	elements in terms of <i>e</i> and <i>r</i> For all elements correct
(ii)	r generates G	B1 1	For this or any statement equivalent to: all elements of G are included in a group with e and r OR order of $r >$ order of all possible proper subgroups
(b)	m, n, p, mn, np, pm	B1	For any 3 orders correct
		B1 2	For all 6 correct and no extras (Ignore 1 and mnp)
		5	
2	METHOD 1		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c \ (= 17)$	A1	For correct vector <i>OR</i> LHS of equation
	$\theta = \sin^{-1} \frac{\left[[1, 4, -1] \cdot [-7, 3, -1] \right]}{\sqrt{1^2 + 4^2 + 1^2} \sqrt{7^2 + 3^2 + 1^2}}$	M1√	For using correct vectors for line and plane f.t. from normal
	VI 14 11 V/ 13 11	M1* M1	For using scalar product of line and plane vectors For calculating both moduli in denominator
	$\theta = \sin^{-1} \frac{6}{\sqrt{18}\sqrt{59}} = 10.6^{\circ}$	A1√ (*dep)	For scalar product. f.t. from their numerator
	(10.609°, 0.18517)	A1 7	For correct angle
	METHOD 2		
	$[1, 3, 2] \times [1, 2, -1]$	M1	For attempt to find normal vector, e.g. by finding vector product of correct vectors, or Cartesian equation
	$\mathbf{n} = k[-7, 3, -1] \ OR \ 7x - 3y + z = c$	A1	For correct vector <i>OR</i> LHS of equation
	7x - 3y + z = 17	M1√	For attempting to find RHS of equation f.t. from n or LHS of equation
	$d = \frac{ 21 - 12 + 2 - 17 }{\sqrt{7^2 + 3^2 + 1^2}} = \frac{6}{\sqrt{59}}$	M1	For using distance formula from a point on the line, e.g.
	$\sqrt{7^2 + 3^2 + 1^2}$ $\sqrt{59}$	A 1√	(3, 4, 2), to the plane For correct distance. f.t. from equation
	$\theta = \sin^{-1} \frac{\frac{6}{\sqrt{59}}}{\sqrt{1^2 + 4^2 + 1^2}} = 10.6^{\circ}$ (10.609°, 0.18517)	M1 A1	For using trigonometry For correct angle
	(10.009, 0.18317)	7	
3 (i)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	For differentiating substitution (seen or implied)
	$\frac{dz}{dx} - 1 = \frac{z+3}{z-1} \implies \frac{dz}{dx} = \frac{2z+2}{z-1} = \frac{2(z+1)}{z-1}$	A1 A1 3	For correct equation in z AEF For correct simplification to AG
(ii)	$\int \frac{z-1}{z+1} \mathrm{d}z = 2 \int \mathrm{d}x$	B1	For $\int \frac{z-1}{z+1} (dz)$ and $\int (1) (dx)$ seen or implied
	$\Rightarrow \int 1 - \frac{2}{z+1} dz \ OR \int 1 - \frac{2}{u} du = 2x (+c)$	M1	For rearrangement of LHS into integrable form OR substitution e.g. $u = z + 1$ or $u = z - 1$
	$\Rightarrow z - 2\ln(z+1) OR z + 1 - 2\ln(z+1)$	A1	For correct integration of LHS as $f(z)$
	$\Rightarrow -2\ln(x+y+1) = x-y+c$	A1 4	For correct general solution AEF

4 (i)	$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5$	B1		For $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ seen or implied z may be used for $e^{i\theta}$ throughout
	$\cos^5 \theta = \frac{1}{32} \left(e^{i\theta} + e^{-i\theta} \right)^5$	M1		For expanding $\left(e^{i\theta} + e^{-i\theta}\right)^5$. At least 3 terms and
	(2 binomial coefficients required <i>OR</i> reasonable attempt at expansion in stages
\cos^5	$\theta = \frac{1}{32} \left(e^{5i\theta} + e^{-5i\theta} + 5 \left(e^{3i\theta} + e^{-3i\theta} \right) + 10 \left(e^{i\theta} + e^{-3i\theta} \right) \right)$	$-i\theta$ $\bigg)\bigg)$	A1	For correct binomial expansion
	$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$	M1 A1	5	For grouping terms and using multiple angles For answer obtained correctly AG
(ii)	$\cos\theta = 16\cos^5\theta$	B1		For stating correct equation of degree 5
	$\Rightarrow \cos \theta = 0, \cos \theta = \pm \frac{1}{2}$	M1		$OR \ 1 = 16\cos^4\theta \ AEF$ For obtaining at least one of the values of $\cos\theta$ from $\cos\theta = k\cos^5\theta \ OR$ from $1 = k\cos^4\theta$
	$\Rightarrow \theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi, \ \frac{2}{3}\pi$	A1 A1	4	A1 for any two correct values of θ A1 for the 3rd value and no more in 0,, θ ,, π
		9)	Ignore values outside 0 ,, θ ,, π

					
5 ((i)	METHOD 1			
		Lines meet where			
		$(x =) k + 2\lambda = k + \mu$	M1		For using parametric form to find where lines meet
		$(y =) -1 - 5\lambda = -4 - 4\mu$	A 1		For at least 2 correct equations
		$(z =) 1 - 3\lambda = -2\mu$			•
		$(2-)$ $1-3k = -2\mu$	M1		For attempting to solve any 2 equations
		$\Rightarrow \lambda = -1, \mu = -2$	A1		For correct values of λ and μ
		<i>,</i> ,			For attempting a check in 3rd equation
			B1		OR verifying point of intersection is on both lines
		$\Rightarrow (k-2,4,4)$	A1	6	For correct point of intersection (allow vector)
					SR For finding λ <i>OR</i> μ and point of intersection, but no check, award up to M1 A1 M1 A0 B0 A1
		METHOD 2			
		$d = \frac{ [0, 3, 1] \cdot [2, -5, -3] \times [1, -4, -2] }{ \mathbf{b} \times \mathbf{c} }$			For using $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ with appropriate vectors (division
		$ \mathbf{b} \times \mathbf{c} $			by $ \mathbf{b} \times \mathbf{c} $ is not essential)
		$d = c[0, 3, 1] \cdot [-2, 1, -3] = 0$	B1		and showing $d = 0$ correctly
		⇒ lines intersect			
		Lines meet where			
		$(x =) (k+) 2\lambda = (k+) \mu$	M1		For using parametric form to find where lines meet
		$(y =) -1 - 5\lambda = -4 - 4\mu$	A1		For at least 2 correct equations
		$(z =) 1-3\lambda = -2\mu$			
			M1		For attempting to solve any 2 equations
		$\Rightarrow \lambda = -1, \mu = -2$	A 1		For correct value of λ <i>OR</i> μ
		$\Rightarrow (k-2,4,4)$	A 1		For correct point of intersection (allow vector)
		METHOD 3	-		
		e.g. $x-k = \frac{2(y+1)}{-5} = \frac{y+4}{-4}$	M1		For solving one pair of simultaneous equations
		$\Rightarrow y = 4$	A1		For correct value of x , y or z
		$\frac{z-1}{-3} = \frac{y+1}{-5}$	M1		For solving for the third variable
		5 5	1111		-
		$x = k - 2 \ OR \ z = 4$	A1		For correct values of 2 of x , y and z
		$x-k = \frac{z}{-2}$ checks with $x = k-2$, $z = 4$	B1		For attempting a check in 3rd equation
		$\Rightarrow (k-2,4,4)$	A1		For correct point of intersection (allow vector)
((ii)	METHOD 1			
		$\mathbf{n} = [2, -5, -3] \times [1, -4, -2]$	M1		For finding vector product of 2 directions
		$\mathbf{n} = c[-2, 1, -3]$	A 1		For correct normal
					SR Following Method 2 for (i),
					award M1 A1 $$ for n , f.t. from their n
		(1, -1, 1) OR (1, -4, 0) OR (-1, 4, 4)	M1		For substituting a point in LHS
		$\Rightarrow 2x - y + 3z = 6$	A 1	4	For correct equation of plane AEF cartesian
	-	METHOD 2	-		
		$\mathbf{r} = [1, -1, 1] + \lambda[2, -5, -3] + \mu[1, -4, -2]$	M1		For using vector equation of plane $(OR [1, -4, 0])$ for
		$1 - [1, -1, 1] + N[2, -3, -3] + \mu[1, -4, -2]$	1711		a)
		$x = 1 + 2\lambda + \mu$			 /
		$y = -1 - 5\lambda - 4\mu$	A 1		For writing 3 linear equations
		$z = 1 - 3\lambda - 2\mu$			
		~ pv	M1		For eliminating λ and μ
		$\Rightarrow 2x - y + 3z = 6$	A1		For correct equation of plane AEF cartesian
		$\rightarrow 2\lambda - y + 32 - 0$		7	For correct equation of plane ALF cartesian
			10		

6 (i)	When a , b have opposite signs, $a b = \pm ab$, $b a = \mp ba \implies a b \neq b a $	M1 A1 2	For considering sign of $a b $ OR $b a $ in general or in a specific case For showing that $a b \neq b a $
(ii)	$(a \circ b) \circ c = (a b) \circ c = a b c OR \ a bc $	M1	Note that $ x = \sqrt{x^2}$ may be used For using 3 distinct elements and simplifying $(a \circ b) \circ c$ OR $a \circ (b \circ c)$
a∘	$(b \circ c) = a \circ (b c) = a b c = a b c OR a bc $	A1 M1 A1 4	For obtaining correct answer For simplifying the other bracketed expression For obtaining the same answer
(iii)	EITHER $a \circ e = a \mid e \mid = a \implies e = \pm 1$	B1* M1	For stating $e = \pm 1$ <i>OR</i> no identity For attempting algebraic justification of +1 and -1 for e
	$OR e \circ a = e a = a$ $\Rightarrow e = 1 \text{ for } a > 0, \ e = -1 \text{ for } a < 0$	A1	For deducing no (unique) identity
	Not a group	B1 (*dep) 4	For stating not a group
		10	

8 (i)	$m^2 + 1 = 0 \implies m = \pm i$	M1		For stating and attempting to solve correct auxiliary
	$\Rightarrow \text{C.F.}$ $(y =) Ce^{ix} + De^{-ix} = A\cos x + B\sin x$	A1	2	equation For correct C.F. (must be in trig form) SR If some or all of the working is omitted, award full credit for correct answer
(ii)(a)	$y = p(\ln \sin x)\sin x + qx\cos x$	M1		For attempting to differentiate P.I. (product rule needed at least once)
$\frac{\mathrm{d}y}{\mathrm{d}x} = p\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\cos x}{\sin x}\sin x + p(\ln\sin x)\cos x + q\cos x - qx\sin x$	A1		For correct (unsimplified) result AEF
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -$	$p\sin x - p(\ln\sin x)\sin x + \frac{p\cos^2 x}{\sin x}$	A 1		For correct (unsimplified) result AEF
	$-2q\sin x - qx\cos x$			
	$-p\sin x + \frac{p\cos^2 x}{\sin x} - 2q\sin x \equiv \frac{1}{\sin x}$	M1		For substituting their $\frac{d^2y}{dx^2}$ and y into D.E.
		M1		For using $\sin^2 x + \cos^2 x = 1$
	$\Rightarrow p - 2(p+q)\sin^2 x \equiv 1$	A 1	6	For simplifying to $AG (\equiv may be =)$
(b)		M1		For attempting to find p and q by
		MI		equating coefficients of constant and $\sin^2 x$ AND/OR giving value(s) to $x(allow any value for x, including 0)$
	p = 1, q = -1	A 1	2	For both values correct
(iii)	G.S. $y = A\cos x + B\sin x + (\ln\sin x)\sin x - x\cos x$	B1√		For correct G.S. f.t. from their C.F. and P.I. with 2 arbitrary constants in C.F. (allow given form of P.I. if <i>p</i> and <i>q</i> have not been found)
	$\csc x$ undefined at $x = 0, \pi, 2\pi$	M1		For considering domain of $\csc x \ OR \sin x \neq 0$
	$OR \sin x > 0$ in $\ln \sin x$			$OR \ln \sin x$ term
	$\Rightarrow 0 < x < \pi$	A1	3	For stating correct range CAO SR Award B1 for correct answer with justification omitted or incorrect
-		13	3	

4728 Mechanics 1

1(i)	900a = 600 - 240	M1	N2L with difference of 2 forces, accept 360	
	$a = 0.4 \text{ ms}^{-2} \qquad AG$	A1		
(**)	0 - 5 + 0.44	[2]		
(ii)	9 = 5 + 0.4t t = 10 s	M1 A1	v = u + 0.4t or $v = u + (cv 0.4)t$	
	$6 = 10.8$ $9^2 = 5^2 + 2x0.4s$	M1	or $s=(u+v)t/2$ or $s=ut+0.5xcv(0.4)t^2$	
	s = 70 m	A1	of $S \left(u + v \right) u = 0$ of $S \left(u + v \right) u = 0$. Show $\left(0.4 \right) u$	
	5 70 III	[4]		
L				
2(i)	Resolves a force in 2 perp. directions	M1*	Uses vector addition or subtraction	
	Uses Pythagoras R ² =	D*M		
	$(14\sin 30)^2 +$	A1	$14^2 + 12^2 -$	
	$(12+14\cos 30)^2$	A 1	2x14x12cos150	
	$\begin{cases} \text{for } R^2 = (12\sin 30)^2 + (14+12\cos 30)^2 \\ R = 25.1 \end{cases}$	A1	cso (Treat $R^2 = 14^2 + 12^2 + 2x14x12\cos 30$	
(ii)	K = 23.1	[5]	as correct) $-17 + 12 + 2x14x12c0s30$	
(11)	Trig to find angle in a valid triangle	M1	Angle should be relevant	
	tanB=7/24.1,sinB=7/25.1,cosB=24.1/25.1	A1	sinB/14 = sin150/25.1. Others possible.	
	$B = 016, (0)16.1^{\circ} \text{ or } (0)16.2^{\circ}$	A1	Cosine rule may give (0)16.4, award A1	
		[3]		
200	615	3.64		
3(i)	a = 6/5 $a = 1.2 \text{ ms}^{-2}$	M1 A1	Acceleration is gradient idea, for portion of graph Accept 6/5	
(ii)	a – 1.2 ms	[2]	Accept 6/3	
(11)	$s = (6x10/2)$ {or $(6x5/2)$	M1	Area under graph idea or a formula used correctly	
	$\begin{array}{ccc} x & (0x10/2) & (0x10/2) \\ x2 & x4 \end{array}$	M1		
(iii)	s = 60 m	A1	· · · · · · · · · · · · · · · · · · ·	
		[3]		
		M1	v=u+at idea, t not equal to 17 (except v=1.2t-24)	
	v = -6 + 1.2(17-15)	A1	$0 = v + cv(1.2)(20-17), v^2 - 2.4v - 21.6 = 0, etc$	
	$v = -3.6 \text{ ms}^{-1}$	A1	SR v=3.6 neither A1, but give both A1 if final answer	
		[3]	given is -3.6	
4(i)		M1	Difference of 2 horizontal components, both < 15	
-(1)	$F = 15\sin 50 - 15\sin 30 = 3.99 \text{ N}$	A1	Not 4 or 4.0	
	Left	B1	Accept reference to 30 degree string	
		[3]	May be given in ii if not attempted in i	
(ii)		M1	Equating 4 vertical forces/components	
	$R = f(30, 15\cos 50, 15\cos 30)$	A1	30g is acceptable	
	$R = 30-15\cos 50-15\cos 30$ $\mu = 3.99/7.36(78)$	A1 M1	=7.36(78), treat 30g as a misread Using $F = \mu R$, with $ev(3.99)$ and $ev(7.36(78))$	
	$\mu = 3.9977.30(78)$ $\mu = 0.541 \text{ or } 0.542 \text{ or } 0.543$	A1	Accept 0.54 from correct work, e.g. $4/7.4$	
	μ 0.511 01 0.512 01 0.515	[5]	11000pt 0.57 Holli collect work, e.g. 7/1.7	
5(i)	2400x5 - 3600x3	B1	Award if g included	
	2400v + 3600v	B1	Award if g included	
	2400x5 - 3600x3 = 2400v + 3600v	M1	Equating momentums (award if g included)	
	$v = 0.2 \text{ ms}^{-1}$	A1	Not given if g included or if negative.	
	В	B1		
(ii)(a)	+/-(-2400v + 3600v)	[5] B1	No marks in(ii) if g included	
(II)(a)	2400x5 - 3600x3 = -2400v + 3600v	M1	Equating momentums if "after" signs differ	
	$v = 1 \text{ ms}^{-1}$	A1	Do not accept if - sign "lost"	
(b)	I = 2400 x (5+/-1) or 3600 x (3+/-1)	M1	Product of either mass and velocity change	
	I = 14400 kgms ⁻¹	A1	Accept -14400	
		[5]		
		[2]		

6(i)	$x = 0.01t^4 - 0.16t^3 + 0.72t^2$.						
	v = dx/dt	M1	Uses differentiation, ignore +c				
	$v = 0.04t^3 - 0.48t^2 + 1.44t.$	A1	or $v = 4(0.01t^3) - 3(0.16t^2) + 2(0.72t)$				
	$v(2)=1.28 \text{ ms}^{-1}$ AG	A1	Evidence of evaluation needed				
		[3]					
(ii)	a = dv/dt	M1	Uses differentiation				
	$a = 0.12t^2 - 0.96t + 1.44$	A1	or $a = 3(0.04t^2) - 2(0.48t) + 1.44$				
	$t^2 - 8t + 12 = 0$ AC	A1	Simplifies $0.12t^2 - 0.96t + 1.44 = 0$, (or verifies the roots				
		[3]	of QE make acceleration zero)				
(iii)	(t-2)(t-6)=0	M1	Solves quadratic (may be done in ii if used to find $v(6)$)				
	t=2	A1	Or Factorises v into 3 linear factors M1				
	t = 6	A1	$v = 0.04t(t-6)^2$ A1 Identifies $t=6$ A1				
	$v(6) = 0 \text{ ms}^{-1}$	B1	Evidence of evaluation needed				
		[4]					
(iv)		B1	Starts at origin				
		B1	Rises to single max, continues through single min				
		B1	Minimum on t axis, non-linear graph				
	Away from A	B1					
		[4]					
(v)	$AB = 0.01x6^4 - 0.16x6^3 + 0.72x6^2$	M1	Or integration of $v(t)$, with limits 0, 6 or substitution,				
	AB = 4.32 m	A1	using cv(6) from iii				
		[2]					

7(i)	(R=)0.2x9.8cos45	M1	Not $F = 0.2x9.8\cos 45$ or $0.2x9.8\sin 45$ unless followed
/(1)	F=1xR=1x.2x9.8cos45=1.386 N AG		by (eg) Fr = $1x$ F = 1.386 when M1A1
	1'-1XK-1X.2X9.8C0843-1.380 N AG		by (eg) 11 -1x 1 - 1.380 when WIAI
(22)	Am. 1 amiliantian af NOI //ta mlana	[2] M1	Must use component of weight
(ii)	Any 1 application of N2L // to plane with correct mass and number of forces	IVII	Widst use component of weight
		A 1	
	0.4a=0.2gsin45+0.2gsin45-1.38(592)	A1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	$0.2a = 0.2g\sin 45 - T$ or		Accept with 3.465 (or close) instead of a
	0.2a = T + [0.2gsin45 - 1.38(592)]	M1	Accept omission of [term] for M1
	T = 0.693 N	A1	Accept 0.69
		[5]	
	OR		
	Any 1 application of N2L // to plane		
	with correct mass and number of forces		Must use component of weight
	$0.2a = 0.2g\sin 45 - T$ or	M1	Either correct
	$0.2a = T + [0.2g\sin 45 - 1.38(592)]$	A 1	Both correct. Accept omission of [term] for A1 only
	Eliminates a or T	M1	
	$a = 3.465 \text{ ms}^{-2}$ AG	A1	
	T = 0.693 N	A1	
(iii)	$v^2 = 2 \times 3.465 \times 0.5$	M1	Using $v^2 = 0^2 + 2xcv(3.465)s$
(111)	$v = 1.86 \text{ ms}^{-1}$	A1	
	, 1.00 ms	[2]	
(iv)	For Q	[-]	
(11)	$(0.2)a = (0.2)g\sin 45 - (1)(0.2)g\cos 45.$	M1	Attempting equation to find a for Q
	a=0 [AG]	A1	Accept from 0.2gsin45 - 1.386
	T = (3/1.86) = 1.6(12)	B1	Accept 1011 0.2gsin43 = 1.360
	For P	DI	Αστρί 2 51
	$a = 9.8\sin 45$	B1	a= 6.93
	$2.5 = 1.86(14)t + 0.5 \times (9.8\sin 45)t^2$	M1	Using $2.5 = \text{cv}(1.86)\text{t} + 0.5\text{cv}(6.93)\text{t}^2$ [not 9.8 or 3.465]
	t = 0.6(223)	A1	Accept 1sf $-6x(1.80)(+0.36x(6.95))(-10019.8 \text{ of } 3.403)$
	` /	A1	•
	time difference $1.612 - 0.622 = 0.99(0)$ s		Accept art 0.99 from correct work
		[7]	

4729 Mechanics 2

1 20	.00cos35°	B1	
	00cos35° x d = 5000	M1 A1	3

2	$0.03R = \frac{1}{2}x0.009(250^2 - 150^2)$	M1	$150^2 = 250^2 + 2a \times 0.03$	
	0.03R	B1	$a = \pm 2x10^6/3 \text{ or } \pm 666,667$ (A1)	
	either K.E.	B1	F = 0.009a (M1)	
	R = 6000 N	A1 4	unit errors	4

3 (i)	D = 12000/20	B1	
	12000/20=k x 20 + 600 x 9.8 x 0.1	M1	
	k = 0.6	A1 3	AG
(ii)	$16000/v = 0.6v + 600 \times 9.8 \times 0.1$	M1	
	$0.6 \text{ v}^2 + 588\text{v} - 16000 = 0$	M1	attempt to solve quad. (3 terms)
	$v = 26.5 \text{ m s}^{-1}$	A1 3	
(iii)	$16000/32 - 0.6 \times 32 = 600a$	M1	
		A1	
	$a = 0.801 \text{ m s}^{-2}$	A1 3	0.80 or 0.8 9

4 (i)	$0 = 35\sin\theta \times t - 4.9t^2$	M1	$R=u^2\sin 2\theta/g$ only ok if proved
	$t = 35\sin\theta/4.9 \qquad 50\sin\theta/7$	A1	or 70sinθ/g aef
	$R = 35\cos\theta x t$ aef	B1	
			their t
	$R = 35^2 \sin\theta \cdot \cos\theta/4.9$	M1	
			eliminate t
	$R = 125\sin 2\theta$	A1 5	
			AG
(ii)	$110 = 125\sin 2\theta$	M1	
	$\theta = 30.8^{\circ} \text{ or } 59.2^{\circ}$	A1+1	
	t = 3.66 s or 6.13 s	A1+1 5	10

5 (i)	$3/8 \times 3 \qquad (1.125)$ $0.53d = 5x0.02 + (10 + 3/8x3) \times 0.5$ $d = 10.7$	B1 M1 A1	4	c.o.m. hemisphere 0.53e=3x5/8x0.5+8x0.02+13x .01 0.53f=3x3/8x0.5-5x0.02-10x0.01	
(ii)	Attempt to calc a pair relevant to P,G OP=0.9 (pair), p= 73.3° q=16.7° r=76.9° (77.2°), s=13.1°(12.8°) AC=0.86,	M1 A1	4	AG (e = 2.316 f = 0.684) distance / angle not a complimentary pair	
	BC=0.67, AD=10.4 BD=10.2 r>p, s < q, p + s < 90, 0.67 < 0.86, 10.2 < 10.4 it is in equilibrium	M1 A1	4	make relevant comparison 0.7 < 0.9 (OG < OP) 10.7 < 10.9	8

6 (i)	$T\cos 60^{\circ} = S\cos 60^{\circ} + 4.9$	M1	Resolving vertically nb for M1:	
	_	A1	(must be components – all 4 cases)	
	$T\sin 60^{\circ} + S\sin 60^{\circ} = 0.5 \times 3^{2} / 0.4$	M1	Res. Horiz. $mr\omega^2$ ok if $\omega \neq 3$	
		A1	If equal tensions 2T=45/4 M1 only	
	$(S + 9.8)\sin 60^{\circ} + S\sin 60^{\circ} = 45/4$	M1		
	S = 1.60 N	A1		
	T = 11.4 N	A1 7		
(ii)	$T\cos 60^{\circ} = 4.9$	M1	Resolving vertically (component)	
	T = 9.8	A1		
	$T\sin 60^{\circ} = 0.5 \times 0.4\omega^{2}$	M1	Resolving horiz. (component)	
		A1		
	$\omega = 6.51 \text{ rad s}^{-1}$	A1 5	or 6.5	12

7 (i)	$u = 3 \text{ m s}^{-1}$	B1		
	6 = 2x + 3y	M1		
		A1		
	e = (y - x)/3	M1		
		A1	$(e = \frac{2}{3})$ (equs must be consistent)	
	y=2	A1 6	AG	
(ii)	$v_h = 2$	B1	or (B1) $\frac{1}{2}$ mx2 ²	
	$v_v^2 = 2 \times 9.8 \times 4$	M1	$(B1) \frac{1}{2} mxv^2$	
	$v_v = 8.85$ $(14\sqrt{10/5})$	A1		
			(B1) mx9.8x4	
	speed = $(8.85^2 + 2^2)$	M1	$v = \sqrt{(2^2 + 2x9.8x4)}$	
	9.08 m s ⁻¹	A1		
	$\tan^{-1}(8.85/2)$	M1	or $\cos^{-1}(2/9.08)$	
	77.3° to horizontal	A1 7	12.7° to vertical	13

8 (i)	com of Δ 3 cm right of C	B1			
	(48+27)x = 48x4 + 27x11	M1			
	(10.27)% 10.11 27.11	A1			
	$\bar{x} = 6.52$	A1			
	com of Δ 2 cm above AD	B1			
	(48+27) y = 48x3 + 27x2	M1			
	(40+27)y = 40X3 + 27X2	A1			
	$\frac{-}{y} = 2.64$	A1	8		
(ii)	14F	B1		can be implied e.g. 7/sin30°. F	
	3gcos30° x 6.52	B1		7.034 (AG) or (6.52-2.64tan30°)	
	3gsin30° x 2.64	В1		52.0° (GAH) or (above)xcos30°	
				$(5.00)x\cos 30^{\circ}$ (4.33)	
	14F=3gcos30°x6.52-3gsin30°x2.64	M1		$14F = 3x9.8x7.034x\cos 52.0^{\circ}$	
	F = 9.09 N	A1	5		13

4730 Mechanics 3

1	(i) $T = (1.35 \text{mg})(3 - 1.8) \div 1.8$	B1		
	[0.9 mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
	(ii) Initial EE =			
	$(1.35\text{mg})(3-1.8)^2 \div (2x1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	

2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A 1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft 8sin27° + candidate's ans. in (i)
				For using $ I = m \times change in$
	$ I = 0.2 \times 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.

3				For using the principle of
				conservation of momentum in the
		M1		i direction
$0.8x12\cos 60^{\circ} = 0.8a + 2b$		A1		
		M1		For using NEL
$0.75 \times 12 \cos 60^{\circ} = b - a$		A1		
				For eliminating b; depends on at
[4.8 = 0.8a + 2(a + 4.5)]		DM1		least one previous M mark
a = -1.5		A1		-
Comp. of vel. perp. to l.o.c. after impa	act is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
The speed of A is 10.5ms ⁻¹		A1ft		ft $v^2 = a^2 + 108$
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated;
Direction of A is at 98.2° to l.o.c.		A1ft	10	ft tan ⁻¹ $\theta = (12\sin 60^\circ)/ a)$

4	(i) $[\text{mgsin }\alpha - 0.2\text{mv} = \text{ma}]$	M1		For using Newton's second law
	$5 \frac{dv}{dt} = 28 - v$	A1		AG For separating variables and
	$\left[\int \frac{5}{28 - v} dv = \int dt\right]$	M1		integrating
	$(C) - 5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$ ft for $ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	ln[(28 - v)/28] = t/A previously
	(ii)			For using $a = (28 - v(t))/5$ or $a = d(28 - 28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
	Acceleration is 0.758ms ⁻²	A1ft	2	ft from incorrect v in the form $a + be^{ct}$ ($b \ne 0$); Accept 5.6/ e^2

5	(i)			For taking moments about B or about A for the whole or For taking moments about X for
		M1		the whole and using $R_A + R_B = 280$ and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			Lot show t A
	$1.4R_B = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\mathrm{B}}$	A1		
	-0.25x130 = 0			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	
	(ii)			For taking moments about X for
		M1		XA or XB
	$1.2F_A = -150x0.45 + 0.9R_A$ or			
	$1.2F_{B} = 0.5R_{B} - 130x0.25$	A1		
	F_A or $F_B = 37.5N$	A1ft		$F_B = (1.25R_B - 81.25)/3$
	F_B or $F_A = 37.5N$	B1ft	4	
	(iii) Horizontal component is 37.5N to the			ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
				For resolving forces on XA
	$[Y + R_A = 150]$	M1		vertically
	Vertical component is 25N upwards	A1ft	3	ft $3V = 225 - 4H$ or $V = 2.4H$ -65

6	(i)			For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		11 7 6
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44y \rightarrow \text{SHM}$ or			
	$d^{2}(x-2.5)/dt^{2} = -1.44(x-2.5)$ SHM	B1		
		M1		For using $T = 2\pi/n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1		
		M1		For using $v^2 = n^2(a^2 - y^2)$
	$0.48^2 = 1.2^2(0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A1	4	
	(iii) $[t_0 = (\sin^{-1}0.6)/1.2; t_1 = (\cos^{-1}0.6)/1.2]$	M1		For using $y = 0.5\sin 1.2t$ to find t_0 or y
				$= 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots \text{ or } t_1 = 0.7727 \dots$	A 1		Principal value may be implied
	(a)			For using $\Delta t = 2t_0$ or
	$[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		$\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t_0 or t_1
	(b)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
				2.62 – ans(a) or
	Time interval is 1.55s	B1ft	5	incorrect t_0 or t_1

7	(i)	M1		For using KE gain = PE loss
	$\frac{1}{2}$ mv ² = mga(1 - cos θ)	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From v = wr
	(ii)			For using Newton's second law
		3.61		radially (3 terms required) with accel
	2/	M1 A1		$= v^2/r$ or w^2r
	$mv^2/a = mgcos \theta - R \text{ or } maw^2 = mgcos \theta - R$	ΛI		For eliminating v ² or w ² ; depends on
	$[2mg(1-\cos\theta) = mg\cos\theta - R]$	DM1		at least one previous M1
	$R = mg(3\cos\theta - 2)$	A1ft	4	ft sign error in N2 equation
	(iii)			For using Newton's second law
	$[mgsin \theta = m(accel.)]$ or			tangentially or
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$			differentiating
	24 (0)0 2gsiii (0)]	M1		$aw^2 = 2g(1 - \cos\theta) \text{ w.r.t. t}$
	Accel. $(=a \ddot{\theta}) = g \sin \theta$	A1		
	$[\theta = \cos^{-1}(2/3)]$	M1		For using $R = 0$
				ft from incorrect R of the form
	A1	A 1.G	4	$mg(Acos +B), A \neq 0, B \neq 0;$
	Acceleration is 7.30ms ⁻²	A1ft	4	accept g $\sqrt{5}$ /3
	(iv)	M1		For using rate of change = $(4D/4D)(4D/4D)$
		1711		$(dR/d\theta)(d\theta/dt)$ ft from incorrect R of the form
	$dR/dt = (-3mg\sin\theta) \sqrt{2g(1-\cos\theta)/a}$	A1ft		$mg(Acos +B), A \neq 0$
		M1		For using $\cos \theta = 2/3$
				Any correct form of \dot{R} with
	Rate of change is $-mg \sqrt{\frac{10 g}{3 a}} \text{ Ns}^{-1}$			$\cos \theta = 2/3$ used; ft with from
	$\sqrt{\frac{3a}{3a}}$	A1ft	4	incorrect R of the form mg(Acos
		AIII	4	$+B$), A $\neq 0$, B $\neq 0$

4731 Mechanics 4

1	By conservation of angular momentum $1.5 \times 21 + I_G \times 36 = 1.5 \times 28 + I_G \times 34$ $I_G = 5.25 \text{ kg m}^2$	M1 A1A1	Give A1 for each side of the equation or $1.5(28-21) = I_G(36-34)$
2 (i)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $0^2 = 8^2 + 2\alpha(2\pi \times 16)$	M1 A1	
	$\alpha = -\frac{1}{\pi} = -0.318$ Angular deceleration is 0.318 rad s ⁻²	2	$Accept - \frac{1}{\pi}$
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $\omega^2 = 8^2 + 2\alpha(2\pi \times 15)$ $\omega = 2 \text{ rad s}^{-1}$	M1 A1 ft	or $0^2 = \omega^2 + 2\alpha(2\pi)$ ft is $\sqrt{64 - 60\pi \alpha }$ or $\sqrt{4\pi \alpha }$ Allow A1 for $\omega = 2$ obtained using $\theta = 16$ and $\theta = 15$ (or $\theta = 1$)
(iii)	Using $\omega_1 = \omega_0 + \alpha t$, $0 = \omega + \alpha t$ $t = 2\pi = 6.28 \text{ s}$	M1 A1 ft	or $2\pi = 0t - \frac{1}{2}\alpha t^2$ ft is $\frac{\omega}{ \alpha }$ or $\sqrt{\frac{4\pi}{ \alpha }}$ Accept 2π
3	$A = \int_0^3 (2x + x^2) \mathrm{d}x$	M1	Definite integrals may be evaluated by calculator (i.e with no working shown)
	$= \left[x^2 + \frac{1}{3}x^3 \right]_0^3 = 18$	A1	
	$A\overline{x} = \int_0^3 x(2x + x^2) \mathrm{d}x$	M1	
	$= \left[\frac{2}{3}x^3 + \frac{1}{4}x^4 \right]_0^3 = \frac{153}{4} = 38.25$	M1	Integrating and evaluating (dependent on previous M1)
	$\overline{x} = \frac{38.25}{18} = \frac{17}{8} = 2.125$	A1	c ¹⁵
	$A\overline{y} = \int_{0}^{3} \frac{1}{2} (2x + x^{2})^{2} dx$	M1	or $\int_0^{15} (3 - (\sqrt{y+1} - 1)) y dy$
	$= \int_0^1 (2x^2 + 2x^3 + \frac{1}{2}x^4) \mathrm{d}x$	M1	Arranging in integrable form
	$= \left[\frac{2}{3}x^3 + \frac{1}{2}x^4 + \frac{1}{10}x^5 \right]_0^3 = 82.8$ $\overline{y} = \frac{82.8}{18} = 4.6$	M1 A1	Integrating and evaluating SR If $\frac{1}{2}$ is missing, then M0M1M1A0 can be earned for \overline{y}
	$y - \frac{1}{18} = 4.0$	9	

4 (i)	β 6-3 50° 6-3 50°	B1	Correct velocity triangle
	$w^2 = 6.3^2 + 10^2 - 2 \times 6.3 \times 10\cos 50^\circ$	M1	
	$w = 7.66 \text{ ms}^{-1}$	A1	
	$\frac{\sin \alpha}{\alpha^2} = \frac{\sin 50^\circ}{}$	M1	This mark cannot be earned from work
	6.3 w $\alpha = 39.04^{\circ}$ $(\beta = 90.96^{\circ})$		done in part (ii)
	Bearing is $205 - \alpha = 166^{\circ}$	A1	
	OR $\begin{pmatrix} 6.3\sin 75 \\ 6.3\cos 75 \end{pmatrix} - \begin{pmatrix} 10\sin 25 \\ 10\cos 25 \end{pmatrix} = \begin{pmatrix} 1.859 \\ -7.433 \end{pmatrix}$ M1A1		
	M1		Finding magnitude or direction
	$w = \sqrt{1.859^2 + 7.433^2} = 7.66$ A1		
	Bearing is $180 - \tan^{-1} \frac{1.859}{7.433} = 166^{\circ}$ A1		
(ii)	As viewed from B	B1 ft	Diagram showing path of A as viewed from B May be implied Or B1 for a correct (ft) expression for d^2 in terms of t
	$d = 2500\sin 14.04$	M1	or other complete method
	= 607 m	A1	Accept 604.8 to 609
		3	SR If $\beta = 89^{\circ}$ is used, give A1 for 684.9 to 689.1

5 (i)	$V = \int_{a}^{4a} \pi(ax) \mathrm{d}x$	M1	(Omission of π is an accuracy error)
	$= \left[\frac{1}{2} \pi a x^2 \right]_a^{4a} = \frac{15}{2} \pi a^3$	M1	
	Hence $m = \frac{15}{2}\pi a^3 \rho$ $I = \sum \frac{1}{2} (\rho \pi y^2 \delta x) y^2 = \int \frac{1}{2} \rho \pi y^4 dx$	M1 M1	For $\int y^4 dx$
	$ \begin{vmatrix} 1 - \sum_{1} \frac{1}{2} (\rho n y \partial x) y - \int_{1} \frac{1}{2} \rho n y dx \end{vmatrix} $ $ = \int_{1}^{4a} \frac{1}{2} \rho \pi a^{2} x^{2} dx $	A1 ft	Substitute for y^4 and correct limits
		A1	
	$= \frac{7}{5} (\frac{15}{2} \pi a^3 \rho) a^2 = \frac{7}{5} m a^2$	A1 (ag) 8	
(ii)	MI about axis, $I_A = \frac{7}{5}ma^2 + ma^2$	M1	Using parallel axes rule
	$=\frac{12}{5}ma^2$	A1	
	Period is $2\pi \sqrt{\frac{I}{mgh}}$	M1	
	$=2\pi\sqrt{\frac{\frac{12}{5}ma^{2}}{mga}}=2\pi\sqrt{\frac{12a}{5g}}$	A1 ft 4	ft from any I with $h = a$
6 (i)	$I = \frac{1}{3}m\{a^2 + (\frac{3}{2}a)^2\} + m(\frac{1}{2}a)^2$	M1 M1	MI about perp axis through centre
	$=\frac{13}{12}ma^2 + \frac{1}{4}ma^2 = \frac{4}{3}ma^2$	Al (ag)	Using parallel axes rule
(ii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}(\frac{4}{3}ma^2)\omega^2 - \frac{1}{2}(\frac{4}{3}ma^2)\frac{9g}{10a} = mg(\frac{1}{2}a - \frac{1}{2}a \times \frac{3}{5})$	A1	
	$\frac{2}{3}ma^2\omega^2 - \frac{3}{5}mga = \frac{1}{5}mga$		
	$\omega^2 = \frac{6g}{5a}$	A1 (ag) 3	
(iii)	$mg\cos\theta - R = m(\frac{1}{2}a)\omega^2$	M1	Acceleration $r\omega^2$ and three terms
	$mg \times \frac{3}{5} - R = \frac{3}{5} mg$	A1	(one term must be R) $SR mg \cos \theta + R = m(\frac{1}{2}a)\omega^2 \Rightarrow R = 0$
	R = 0	A1 (ag)	earns M1A0A1
	$mg(\frac{1}{2}a\sin\theta) = I\alpha$	M1A1	Applying $L = I\alpha$
	$\alpha = \frac{3g}{10a}$	A1	
	$mg\sin\theta - S = m(\frac{1}{2}a)\alpha$	M1A1	Acceleration $r\alpha$ and three terms
	$S = \frac{4}{5}mg - \frac{3}{20}mg$		(one term must be S) or $S(\frac{1}{2}a) = I_G \alpha = \frac{13}{12}ma^2\alpha$
	$=\frac{13}{20}mg$	A1 9	or $S(\frac{\pi}{2}u) - I_G u - \frac{\pi}{12}mu u$

7 (i)	U = 3mgx + 2mg(3a - x)	B1B1	Can be awarded for terms listed
	$+\frac{mg}{2a}(x-a)^2 + \frac{2mg}{2a}(2a-x)^2$	B1B1	separately
	$= \frac{mg}{2a} (3x^2 - 8ax + 21a^2)$	M1	Obtaining $\frac{dU}{dr}$
	$\frac{\mathrm{d}U}{\mathrm{d}x} = 3mg - 2mg + \frac{mg}{a}(x - a) - \frac{2mg}{a}(2a - x)$	A1	(or any multiple of this)
	$=\frac{3mgx}{a}-4mg$		
	When $x = \frac{4}{3}a$, $\frac{dU}{dx} = 4mg - 4mg = 0$		
	so this is a position of equilibrium	A1 (ag)	
	$\frac{\mathrm{d}^2 U}{\mathrm{d}x^2} = \frac{3mg}{a}$	M1	
	> 0, so equilibrium is stable	A1 (ag) 9	
(ii)	KE is $\frac{1}{2}(3m)v^2 + \frac{1}{2}(2m)v^2$	M1A1	
	Energy equation is $U + \frac{5}{2}mv^2 = \text{constant}$		
	Differentiating with respect to t	M1	Differentiating the energy equation
	$\left[\left(\frac{3mgx}{a} - 4mg \right) \frac{\mathrm{d}x}{\mathrm{d}t} + 5mv \frac{\mathrm{d}v}{\mathrm{d}t} = 0 \right]$	A1 ft	(with respect to t or x)
	$\frac{3gx}{a} - 4g + 5\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 0$	A1 ft	
	Putting $x = \frac{4}{3}a + y$, $\frac{3gy}{a} + 5\frac{d^2y}{dt^2} = 0$	M1A1 ft	Condone \ddot{x} instead of \ddot{y} Award M1 even if KE is missing
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\frac{3g}{5a}y$, c
	Hence motion is SHM	A1 (ag)	Must have $\ddot{y} = -\omega^2 y$ or other satisfactory explanation
	with period $2\pi \sqrt{\frac{5a}{3g}}$	A1 9	sansjaciory explanation
	<u>'</u>	,	

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding

Penalise over-rounding only once in paper.

Penalise o	ver-rounding only once in paper.		-
1(i)	(a) -1	B1	allow \approx -1 or close to -1
			not "strong corr'n", not -0.99
	(b) 0	B1 2	allow ≈ 0 or close to 0
			not "no corr'n"
(ii)	4 3 2 1 or 1 2 3 4	M1	Ranks attempted, even if opp
	1 3 4 2 4 2 1 3	A1	
	Σd^2 (= 14)	M1	Dep M1 or $S_{xy} = 23^{-100}/_4$ or $S_{xx} = S_{yy} = 30^{-100}/_4$
	$1-6\Sigma d^2$	M1	Dep 2^{nd} M1 $S_{xy}//(S_{xx}S_{yy})$
	$1 - \underline{6\Sigma d^2}_{4(4^2-1)}$		
	=-0.4 oe	A1 5	
Total		7	
2(i)	$\frac{{}^{7}\underline{C}_{1}}{{}^{15}\underline{C}_{5}}$	M1	$^{7}\text{C}_{2} \times ^{8}\text{C}_{3}$ or 1176 : M1
	$\frac{-15}{15}$ C ₅	M1	$(\text{Any C or P})^{15}\text{C}_5$: M1 (dep < 1)
			or $\frac{7}{15} \times \frac{6}{14} \times \frac{8}{13} \times \frac{7}{12} \times \frac{6}{11}$ or 0.0392: M1
			15 11 15 12 11
			\times^5 C ₂ or \times 10 : M1 (dep \ge 4 probs mult)
	$= \frac{56}{143}$ or $\frac{1176}{3003}$ or 0.392 (3sfs)	A1 3	
			if 2↔3, treat as MR max M1M1
(ii)	$3! \times 2!$ or ${}^{3}P_{3} \times {}^{2}P_{2}$ not in denom	M1	BABAB seen: M1
	= 12	A1 2	120-12: M1A0
			$NB^{4!}/_{2!} = 12: M0A0$
Total		5	
3(i)(a)	0.9368 or 0.937	B1 1	
(b)	$0.7799 - 0.5230$ or ${}^{8}C_{5} \times 0.45^{3} \times 0.55^{5}$	M1	Allow 0.9368 – 0.7799
	= 0.2569 or 0.2568 or 0.257	A1 2	
(c)	0.7799 seen		${}^{8}C_{5}x0.45^{3}x0.55^{5} + {}^{8}C_{4}x0.45^{4}x0.55^{4} + {}^{8}C_{3}x\ 0.45^{5}\ x\ 0.55^{3}$: M2
	-0.0885 (not $1-0.0885$)	1.11	1 term omitted or wrong or extra: M1
	= 0.691 (3 sfs)	A1 3	·
(ii)(a)	$^{10}\text{C}_2 \times (^{7/}_{12})^8 \times (^{5/}_{12})^2 \text{ seen}$	M1	or 0.105 seen, but not ISW for A1
	= 0.105 (3 sfs)	A1 2	
(b)	$2^{31}/_{72}$ or $1^{75}/_{72}$ or 2.43 (3 sfs)	B1 1	$NB^{12}/_{5} = 2.4$: B0
Total		9	
4(i)	$^{1}/_{20} \times ^{1}/_{10} \text{ or } ^{1}/_{200} \text{ or } 0.005$	M1	
	x 2	M1dep	
	$= \frac{1}{100}$ or 0.01	A1 3	
(ii)	$E(X) = 0 + 50x^{1}/_{10} + 500x^{1}/_{20}$ or	M1	or eg 20 goes: $2 \times £0.50 + £5.00$
	$\begin{vmatrix} 0+0.5x^{1}/_{10}+5x^{1}/_{20} \\ = 30p \\ = £0.30 \text{ or } \frac{3}{10} \end{vmatrix}$	A1	= £6.00
		M1	$(\text{``£6.00''} + 20 \times \text{£0.20}) \div 20$
	Charge " $30p$ " + $20p$ or $0.3 + 0.2$		condone muddled units eg 0.3 + 20
	= 50p or 0.50 or 0.5	A1 4	20.70.520
	- 50p 01 0.50 01 0.5		x = 20, 70, 520 : M1A1
			$20 \times {}^{17}/_{20} + 70 \times {}^{1}/_{10} + 520 \times {}^{1}/_{20}$: M1
			= 50 A1
			(50) (500)
			x, (x-50), (x-500) : M1A1
			$x \times {}^{17}/_{20} + (x - 50) \times {}^{1}/_{10} + (x - 500) \times {}^{1}/_{20} = 20$:
			M1
			x = 50 : A1
			Ignore "f" or "p"
Total			Ignore "£" or "p"
Total		7	

5(i)	$^{12}/_{22} \times ^{11}/_{21}$	M1	or ${}^{12}C_2 / {}^{22}C_2$
	$= \frac{2}{7}$ oe or 0.286 (3 sfs)	A1 2	
(ii)	$7/_{15} \times 6/_{14} \times 8/_{13}$ or $8/_{65}$ oe $\times 3$ oe $= 2^{4}/_{65}$ or 0.369 (3 sfs)	M1 M1 A1 3	Numerators any order $(C_2 \times {}^8C_1)$:M1 3 x prod any 3 probs $(any C \text{ or } P)^{/15}C_3$:M1 $(dep < 1)$
			$\begin{array}{c} 1\text{-}(^8/_{15}x^7/_{14}x^6/_{13} + 3 \times ^8/_{15}x^7/_{14}x^7/_{13} + ^7/_{15}x^6/_{14}x^5/_{13}) & : \\ M2 & \text{one prod omitted or wrong: } M1 \end{array}$
(iii)	$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe	M1	not $\frac{x}{45} \times \frac{x}{44} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x}{45} = \frac{1}{15}$ or $\frac{x}{45} \times \frac{x-1}{45} = \frac{1}{15}$
	$x^2 - x - 132 = 0$ or $x(x - 1) = 132$	A1	oe
	(x-12)(x+11) = 0 or $x = \frac{1 \pm \sqrt{(1^2 - 4 \times (-132))}}{2}$	M1	ft 3-term QE for M1 condone signs interchanged allow one sign error
	No. of $Ys = 12$	A1 4	Not $x = 12$ or -11 ans 12 from less wking, eg $12 \times 11 = 132$ or T & I: full mks
			Some incorrect methods:
			$\frac{x}{45} \times \frac{x-1}{44} = \frac{1}{15}$ oe M1 $x^2 + x = 132$ A0 x = 11 M1A0
			$12 \times 11 = 132$ M1A1M1 x = 12 and (or "or") 11 A0
			NB 12 from eg 12.3 rounded, check method
Total		9	

6(i)(a)	256	B1 1	
o(1)(a)		DI I	(i)(b) & (ii)(abc): ISW
		1	ie if correct seen, ignore extras
(b)	Total unknown or totals poss diff	B1 1	pie chart shows only proportions oe
(0)	or Y13 may be smaller or similar	Di i	or no. of students per degree may differ
	or size of pie chart may differ		not "no. of F may be less"
	of size of pic chart may differ		not "Y13 may be larger"
(ii)(a)	B&W does not show frequencies oe	B1 1	or B&W shows spread or shows mks or M lger
(11)(11)			range
(b)			1 mk about overall standard, based on median or on F's IQR being "higher"
			1 mk about spread (or range or IQR) or about skewness.
			must be overall, not indiv mks
			must be comparison, not just figures
			Examples:
	F generally higher or median higher		not F higher mean
	F higher on average or F better mks		
	F IQR is above M IQR	B1	
	F more compact M wide(r) range or gter IQR		not M have hiest and lowest mks
	or gter variation or gter variance		
	or more spread or less consistent		
	M evenly spread or F skewed	B1 2	condone F +ve skew
		-	Dow. 1
(c)	Advantage:		not B&W shows skewness
	B&W shows med or Qs or IQR or range	B1	not B&W shows info at a glance
	or hiest & lowest or key values	DI	not B&W easier to compare data sets not B&W shows mean
			not B&W shows spread
			not B&W easier to calculate or easier to read
			not be weaster to calculate of easier to read
	Disadvantage:		
	B&W loses info'	1	not B&W does not give indiv (or raw) data
	B&W shows less info'		not B&W does not show mean
	B&W not show freqs		
	B&W not show mode	1	
	B&W: outlier can give false impression	1	
	hist shows more info		not hist shows freq for each mark
	hist shows freqs or fds		not hist shows all the results
	hist shows modal class (allow mode) hist	1	not hist shows total
	shows distribution better		
	can calc mean from hist	B1 2	allow adv of hist as disadv of B&W
(iii)	$102 \times 51 + 26 \times 59$	M1	or 5202 + 1534 or 6736
	÷ 128	M1dep	
	= 52.6 (3 sfs)	A1 3	
Total		10	

Control Con	7(:)	Constated	\ I 1		on invalid has 0.7"-0.2 on 0.2"-0.7
(ii) $\frac{1680}{97} \frac{1}{8000} = 0.01.03 (3 sls)$ Al. 3 $\frac{1}{2} = 0.018 (3 sls)$ Al. 2 $\frac{1}{2} = 0.018 (3 sls)$ Al. 2 $\frac{1}{2} = 0.018 (3 sls)$ Al. 2 $\frac{1}{2} = 0.018 (3 sls)$ Al. 3 $\frac{1}{2} = 0.010 (3 sls)$ Al. 3 $\frac{1}{2} = 0.000 (3 sls)$ Al. 3 $\frac{1}{2$	7(i)	Geo stated	M1		or implied by $0.7^r \times 0.3$ or $0.3^r \times 0.7$
(ii) 0.7° alone $-0.118 (3 \text{ sts})$ $A1 = 2$ $0.960 (3 \text{ sfs})$ $A1 = 0.7^{\circ}$ $0.960 (3 \text{ sfs})$ $A1 = 0.7^{\circ}$ $0.960 (3 \text{ sfs})$ $A1 = 0.960 (3 \text{ sfs})$ $A1 $				2	Allow 0.7×0.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1029/10000 oe or 0.103 (3 sfs)		3	
(ii) $0.7^{\circ} \\ 1-0.7^{\circ} \\ 0.960 (3 \mathrm{sis})$ MI allow 0.96 , if no incorrect wking seen $0.3+0.7 \times 0.3+\ldots +0.7^{\circ} \times 0.3$; M2 1 term omitted or wrong or "correct" extra: M1 or implied by table or " $C_{\rm C}$ or $0.7^{\circ} \times 0.3^{\circ}$ or 0.309° or 0.0309° or	(ii)				$1-(0.3+0.3\times0.7++0.3\times0.7^{5})$ not $1-0.7^{6}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A1	2	
0.960 (3 sfs)	(iii)		M1		not 0.3×0.7^9
0.960 (3 sfs)		$1 - 0.7^9$	M1		allow $1 - 0.7^{10}$ or 0.972 for M1
(iv) Bin stated			A1	3	
I term omitted or wrong, or "correct" extra: MI or implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term omitted or wrong, or "correct" extra: MI or implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of		, í	1		,
I term omitted or wrong, or "correct" extra: MI or implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term omitted or wrong, or "correct" extra: MI or implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of implied by table or "C, $\frac{1}{2}$ Or 0.3099 Term of					$0.3 + 0.7 \times 0.3 + \dots + 0.7^8 \times 0.3$: M2
(iv) Bin stated $\frac{^3C_2 \times 0.7^3 \times 0.3^2}{^2C_2 \times 0.7^3 \times 0.3^2} \text{ or } 0.8369 - 0.5282 = 0.3087 \text{ or } 0.309 \text{ (3 sis)}$ Total $\frac{1}{80}$ $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} = -0.960 \text{ (3 sis)}$ (ii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} = -0.960 \text{ (3 sis)}$ A1 3 allow -0.96, if no incorrect wking seen not x is not random not x affects by not x pose up same amount each time not charge affects no. of vehicles not x not being measured (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ $\frac{1136 - \frac{88^2}{8}}{1136 - \frac{88^2}{8}}$ $1136 - $					
Total	(iv)	Bin stated	M1		or implied by table or ${}^{n}C_{n}$ or $0.7^{3} \times 0.3^{2}$
Total S(i) $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} \frac{11}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} \frac{11}{\sqrt{(168 \times 0.9)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.9}})}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} \frac{11}{\sqrt{(168 \times 0.9)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.9}})}{\sqrt{(1136 - \frac{88}{8})(34.52 - \frac{16.4^2}{8})}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.9}})}{\sqrt{(1136 \times 0.9)(118 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.9}})}{\sqrt{(1136 \times 0.96)(118 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(1136 \times 0.96)(118 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(1136 \times 0.96)(118 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(1136 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(1136 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(1136 \times 0.96)}} \frac{(-\frac{11.8}{\sqrt{168 \times 0.96}})}{\sqrt{(118 \times 0.96)}} \frac{(-\frac{11.8}{168 $	(14)	Biii stated	1111		· -
0.3087 or 0.309 (3 sfs)		$^{5}C_{-} \times 0.7^{3} \times 0.3^{2}$ or $0.8369 - 0.5282$	М1		01 0.0307
Total 8(i) $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{11}{\sqrt{(168 \times 0.9)}}$ $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{11}{\sqrt{(168 \times 0.9)}}$ $\frac{10}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{11}{\sqrt{(168 \times 0.9)}}$ $\frac{10}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{11}{\sqrt{(168 \times 0.9)}}$ $\frac{10}{\sqrt{(168 \times 0.9)}}$		$C_2 \times 0.7 \times 0.5 \text{of } 0.8309 = 0.3282$ = 0.3087 or 0.300 (2.sfs)		2	
8(i) $\frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{168.6 - \frac{88 \times 16.4}{8}}{\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}} = \frac{1}{2} = \frac{-0.960 (3 sfs)}{\sqrt{(168 \times 0.9)}}$ Al 3 allow -0.96 , if no incorrect wking seen not x is not random not x affects y not x not affected by y not y not affected by y not y not an object y not y not affected by y not y not y not y not affected by y not y n	T-4-1	- 0.3087 01 0.309 (3 SIS)			
$\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}$ = -0.960 (3 sfs) (ii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is fixed (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -1.4(2) \text{ million } (2 sfs)$ $= -1.4(2) \text{ million } (2 sfs)$ $= -1.4(2) \text{ million } (2 sfs)$ $= 1.4(2) \text{ million } (2 sfs)$ $= 1.4(2) \text{ million } (2 sfs)$ $= 1.5(2) \text{ month } (3 \text{ month }$		00 164	1	1	
$\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}$ = -0.960 (3 sfs) (ii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is fixed (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -0.0702 (3 sfs) \text{ or } \frac{-59/840 \text{ or } -^{11.8}/168}{8}$ $= -1.4(2) \text{ million } (2 sfs)$ $= -1.4(2) \text{ million } (2 sfs)$ $= -1.4(2) \text{ million } (2 sfs)$ $= 1.4(2) \text{ million } (2 sfs)$ $= 1.4(2) \text{ million } (2 sfs)$ $= 1.5(2) \text{ month } (3 \text{ month }$	8(1)	$168.6 - \frac{88 \times 16.4}{}$			$(-\frac{-11.8}{})$
$\sqrt{(1136 - \frac{88^2}{8})(34.52 - \frac{16.4^2}{8})}$ $= -0.960 (3 sfs)$ (ii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is fixed (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 sfs) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $\frac{y - \frac{16.4}{8}}{y - \frac{9}{2} - 0.0702^{\circ}(x - \frac{88}{8})}$ $\frac{y - \frac{10.4}{8}}{y - \frac{9}{2} - 0.07x + 2.8} \text{ or better}$ (iv) (a) $\frac{0.07^{\circ} \times 20 + ^{\circ}2.8^{\circ}}{1 + (2)} = \frac{1.42}{2} \text{ million} (2 sfs)$ (b) r close to -1 or corr'n is high (b) r close to -1 or corr'n is high (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1 + \frac{1}{2} - \frac{10.4}{8}} = \frac{1.42}{8} = \frac{1.136}{8} = \frac{1.136}{1136} = 1.1$		X			$\sqrt{168 \times 0.9}$
cii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is fixed B1 1 1136 - $\frac{88 \times 16.4}{8}$		002 16.42	M2		
cii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is fixed B1 1 1136 - $\frac{88 \times 16.4}{8}$		$(1136 - \frac{88}{})(34.52 - \frac{16.4}{})$	ł		
(ii) must refer to, or imply, external constraint on x e.g. x is controlled or values of x fixed or chosen allow x is indep The fixed x is not random not x affects y not x is fixed or chosen allow x affects y not x affects y not x affects y not x of x of x affects y not x of x affects y not x of x of x affects y not x of x affects y not x affects y n		8 /3 1.52 8	ł		1912. Correct substil ill ally correct r formula
(ii) must refer to, or imply, external constraint on x e. $g. x$ is controlled or values of x fixed or chosen allow x is fixed (iii) $\frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $y - \frac{164}{8} = \frac{\text{c}}{\text{c}} -0.0702^{\text{c}}(x - 8^8/8)$ $y = -0.077 \times 2.0 + \frac{\text{c}}{2.8}$ (iv) (a) $\frac{1}{\text{c}} -\frac{40.07}{\text{c}} \times 2.0 + \frac{\text{c}}{2.8}$ (b) r close to -1 or corr'n is high (b) r close to -1 or corr'n is high (iii) $\frac{1}{\text{c}} = \frac{1.4(2) \text{ million } (2 \text{ sfs})}{\text{c}} = \frac{1.4(2) \text{ million } (2 \text{ sfs})}{$		= -0.960 (3.sfs)	A1	3	allow -0.96 if no incorrect wking seen
e.g. x is controlled or values of x fixed or chosen allow x is fixed (iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} $ $ = -0.0702 (3 sfs) \text{ or }^{-59}/840 \text{ or }^{-11.8}/168} $ $ y - \frac{164}{8} = \frac{\text{e.g. } 0.0702^{\circ}(x - 88/8)}{2.20 \text{ or } 0.070 \times 20 + \text{e.g. } 8} $ $ = 1.4(2) \text{ million } (2 sfs) $ (b) $ r \text{ close to -1 or corr'n is high} $ $ x \text{ is indep} $ (v) $ y \text{ on } x$ $x \text{ is indep} $ (v) $ y \text{ on } x$ $x \text{ is indep} $ (v) $ x \text{ is indep} $ (v) $ x \text{ or } x \text{ inder if etced by } y \text{ not } x \text{ affected by } y \text{ not } x \text{ not affected by } y \text{ not affected by } y \text{ not } x \text{ not affected by } y \text{ not affected by } x \text{ not affected by } y \text{ not affected by affected by } y \text{ not affected by affected by } y not affected by affected$	(ii)		h		
e.g x is controlled or values of x fixed or chosen allow x is fixed (iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} = -0.0702 \text{ (3 sfs) or } -5^{9}/840 \text{ or } -11.8/168} \\ y - \frac{164}{8} = -0.0702 \text{ (3 sfs) or } -5^{9}/840 \text{ or } -11.8/168} \\ y - \frac{10.07x + 2.8}{2} = 0.07x + 2.8 \text{ or better} $ (iv)(a) $ \frac{(0.07x)^{2} \times 20 + (2.8^{2})}{1.4(2) \text{ million (2 sfs)}} = 1.4(2) \text{ million (2 sfs)} $ (b) $ r \text{ close to -1 or corr'n is high} $ (iv) $ y \text{ on } x \text{ x is indep} $ (v) $ y \text{ on } x \text{ x is indep} $ (iv) $ x \text{ incl } \frac{168.6}{1.136} \text{ if used in (i)} $ or $-0.07 \text{ if no incorrect wking}} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } \frac{2371}{840} $ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8} \text{ or } 2$	(11)		ł		
or values of x fixed or chosen allow x is fixed B1 1 not x goes up same amount each time not charge affects no. of vehicles not x not being measured (iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} $ $= -0.0702 (3 sfs) \text{ or } ^{-59}/_{840} \text{ or } ^{-11.8}/_{168} $ $y - ^{16.4}/_8 = \text{``-0.0702''}(x - ^{88}/_8)$ $y = -0.07x + 2.8 \text{ or better} $ (iv) (a) $\frac{\text{``-0.07} \times 20 + \text{``-2.8''}}{1.4(2) \text{ million } (2 \text{ sfs})}$ (b) $\frac{\text{In } x}{\text{In } x} = \frac{1.4(2) \text{ million } (2 \text{ sfs})}{1.4(2) \text{ million } (2 \text{ sfs})}$ (b) $\frac{\text{In } x}{\text{In } x} = \frac{1.4(2) \text{ million } (2 \text{ sfs})}{1.4(2) \text{ million } (2 \text{ sfs})}$ B1 or good corr'n or pts close to line but not if "close to -1, hence unreliable" if r low in (i), ft: " r low" or "poor corr'n" etc just outside given data, so reliable B1 2 or outside given data so unreliable not "reliable as follows average" no ft from (iv)(a) (v) $\frac{y}{x} = \frac{x}{x} = \frac{x}$			ł		
(iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} $ M1 ft their S_{xy} and S_{xx} incl $\frac{168.6}{1136}$ if used in (i) or -0.0702 (3 sfs) or $-\frac{59}{840}$ or $-\frac{11.8}{168}$ M1 or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{88}{8}$ or $a = \frac{16.4}{8} - (\text{``-0.0702''}) \times \frac{18}{8}$ or $a = $					
(iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} $ M1 ft their S_{xy} and S_{xx} incl $^{168.6} /_{1136}$ if used in (i) or -0.0702 (3 sfs) or $^{-59} /_{840}$ or $^{-11.8} /_{168}$ A1 or $^{-0.0702} /_{1136}$ if used in (i) or $^{-0.0702} /_{136}$ if used in (i) or $^{-0.0702} /_{136}$ if used in (i) or $^{-0.0702} /_{136}$ and $^{$			D.1	1	
(iii) $ \frac{168.6 - \frac{88 \times 16.4}{8}}{1136 - \frac{88^2}{8}} $ $ = -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $ = -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})^{2}} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{88}{8})}{(x - \frac{10.4}{8})} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{10.4}{8})}{(x - \frac{10.4}{8})} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{10.4}{8})}{(x - \frac{10.4}{8})} $ $ = y - \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{10.4}{8})}{(x - \frac{10.4}{8})} $ $ = \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{10.4}{8})}{(x - \frac{10.4}{8})} $ $ = \frac{16.4}{8} = \frac{(-0.0702)^{2}(x - \frac{10.4}{8}$		allow x is fixed	BI	1	
$\frac{88^2}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $y - \frac{16.4}{8} = \text{``} -0.0702\text{``}(x - 88/8)$ $y = -0.07x + 2.8 \text{ or better}$ $(iv)(a) \text{``} 0.07\text{``} x \cdot 20 + \text{``} 2.8\text{``}$ $= 1.4(2) \text{ million } (2 \text{ sfs})$ $r \text{ close to } -1 \text{ or corr'n is high}$ $\frac{B1}{y} = 0.073 \text{ or } \frac{16.8}{8} - (\text{``} -0.0702\text{''}) \times \frac{88}{8} \text{ or } \frac{2371}{840}$ $\frac{88^2}{y - 0.0702\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{88^2}{y - 0.0702\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{81}{y - 0.07\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{81}{y - 0.07\text{''}} \times \frac{2071}{940} \times \frac{2371}{940}$ $\frac{971}{y - 0.07\text{''}} \times \frac{2071}{940} \times \frac{2071}{940}$ $\frac{971}{y - 0.$			ļ		not x not being measured
$\frac{88^2}{1136 - \frac{88^2}{8}}$ $= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $= -0.0702 (3 \text{ sfs}) \text{ or } -\frac{59}{840} \text{ or } -\frac{11.8}{168}$ $y - \frac{16.4}{8} = \text{``} -0.0702\text{``}(x - 88/8)$ $y = -0.07x + 2.8 \text{ or better}$ $(iv)(a) \text{``} 0.07\text{``} x \cdot 20 + \text{``} 2.8\text{``}$ $= 1.4(2) \text{ million } (2 \text{ sfs})$ $r \text{ close to } -1 \text{ or corr'n is high}$ $\frac{B1}{y} = 0.073 \text{ or } \frac{16.8}{8} - (\text{``} -0.0702\text{''}) \times \frac{88}{8} \text{ or } \frac{2371}{840}$ $\frac{88^2}{y - 0.0702\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{88^2}{y - 0.0702\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{81}{y - 0.07\text{''}} \times \frac{2071}{840} \times \frac{2371}{840}$ $\frac{81}{y - 0.07\text{''}} \times \frac{2071}{940} \times \frac{2371}{940}$ $\frac{971}{y - 0.07\text{''}} \times \frac{2071}{940} \times \frac{2071}{940}$ $\frac{971}{y - 0.$	(111)	$168.6 - \frac{88 \times 16.4}{168.6}$			
		8	l		
		882	Ml		If their S_{xy} and S_{xx}
		$1136 - \frac{66}{}$			$\frac{100.0}{1136}$ if used in (1)
		8			
		$= -0.0702$ (3 sfs) or $-\frac{59}{840}$ or $-\frac{11.8}{168}$	Al		or -0.07 if no incorrect wking
Secondary Sec		(5 5 5 5 7 6 5 7 7 100			16.4/ (((0.0702)) - 88/ - 2371/
(iv)(a) "-0.07" x 20 + "2.8"		$v - \frac{16.4}{9} = \text{``-0.0702''}(x - \frac{88}{9})$			or $a = \frac{78 - (-0.0702) \text{ x}}{597} \times \frac{23717}{12}$
(iv)(a) = "-0.07" x 20 + "2.8"			Αl	4	oe eg $y = -1/840x + 1/840$
= 1.4(2) million (2 sfs)	(jv)(a)		M1		
(b) r close to -1 or corr'n is high B1 or good corr'n or pts close to line but not if "close to -1, hence unreliable" if r low in (i), ft: "r low" or "poor corr'n" etc B1 2 or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x	(-1)(4)			2	no ft
but not if "close to -1, hence unreliable" if r low in (i), ft: "r low" or "poor corr'n" etc B1 2 or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v)	(h)				
just outside given data, so reliable B1 2 or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x x is indep B1 or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2	(0)	, close to 1 of con in is high	וע		
just outside given data, so reliable B1 2 or outside given data so unreliable not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x x is indep B1 2 or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2			ł		
not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2			ł		11 / 10 w III (1), It. / 10 w OI pool coll II etc
not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2			ł		
not "reliable as follows trend" not "reliable as follows average" no ft from (iv)(a) (v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not "x on y" r close to -1 so makes little difference: B2		ingt outside given date as reliable	D1	2	or outside given date so unreliable
(v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not " x on y " x close to -1 so makes little difference: B2		Just outside given data, so tellable	ומ	2	or outside given data so uniteriable
(v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not " x on y " x close to -1 so makes little difference: B2			ł		not "raliable as follows trand"
(v) $y \text{ on } x$ $x \text{ is indep}$ B1 B1 2 or $x \text{ controlled or } y \text{ depends on } x$ or $y \text{ not indep}$ dep on not " $x \text{ on } y$ " $r \text{ close to -1 so makes little difference: B2}$			ł		
(v) y on x x is indep B1 B1 2 or x controlled or y depends on x or y not indep dep on not " x on y " r close to -1 so makes little difference: B2			ł		
x is indep B1 2 or x controlled or y depends on x or y not indep dep on not " x on y " x close to -1 so makes little difference: B2			ł		no it nom (iv)(a)
x is indep B1 2 or x controlled or y depends on x or y not indep dep on not " x on y " x close to -1 so makes little difference: B2			D1		
or y not indep dep on not " x on y " r close to -1 so makes little difference: B2	(v)	·		_	
dep on not " x on y " r close to -1 so makes little difference: B2		x is indep	В1	2	
r close to -1 so makes little difference: B2					
			ł		dep on not "x on y"
Total 14					r close to -1 so makes little difference: B2
	Total		1	4	

4733 Probability & Statistics 2

General: Conclusions to hypothesis tests must acknowledge uncertainty. Thus "time is unchanged" is A0. Similarly, "Giornificant avidence that time is unchanged" in also A0.

	"	Significant evidence that time is unchanged	" is also A	4 0.	
1	(i)	Biased in favour of those with strong	B2	2	"Biased", "unrepresentative", "not indept" or equiv
	()	political interest			[but <i>not</i> "not random"] stated, with sensible reason.
					[SR: partial answer, B1]
	(ii)	Obtain list of all pupils	B1		List, can be implied; number serially or randomly,
	()	Allocate numbers sequentially	B1		not just "number pupils"
		Choose using random numbers	B1	3	Select consistently with method of numbering,
		8			not just "select randomly"
					[SR: systematic: List B1, every n^{th} B1, random start B1]
					[SR: names in a hat: B2]
2	(i)	$\Phi\left(\frac{24-30}{12}\right) - \Phi\left(\frac{20-30}{12}\right)$	M1		Standardise one, allow $\sqrt{12}$, 12^2 , \sqrt{n}
		$\Phi\left(\frac{12}{12}\right) - \Phi\left(\frac{12}{12}\right)$	A1		Both standardisations correct, allow cc here
		$=\Phi(-0.5)-\Phi(-0.833)$	M1		Correct handling of tails [0.3085 – 0.2024]
		=(1-0.6915)-(1-0.7976)= 0.1061	A1	4	Answer, a.r.t. 0.106, c.a.o.
	(ii)	Not symmetrical (skewed)	M1		Any comment implying not symmetric
	()	Therefore inappropriate	A1	2	Conclude "not good model" [Partial answer: B1]
3		$H_0: \mu = 28$	B2		Both hypotheses correctly stated; one error, allow
		$H_1: \mu \neq 28$			wrong or no letter, but not x or t or \bar{x} , B1
		$\sigma^2 = 37.05 \times 40/39$ [= 38]	M1		Multiply 37.05 or $\sqrt{37.05}$ by $n/(n-1)$ or $\sqrt{[n/(n-1)]}$
			M1		Standardise with \sqrt{n} , allow $\sqrt{1}$ errors, cc, +
	α	$z = \frac{26.44 - 28}{\sqrt{38/40}} = -1.601$	A1		Correct z, a.r.t -1.60 , or $p \in [0.0547, 0.0548]$
		Compare –1.645, or 0.0547 with 0.05	B1		Explicit comparison of z with -1.645 or p with 0.05
	β	Critical value $28 - z\sigma \sqrt{n}$ [= 26.397]	M1		Allow "±", √ errors, cc, ignore other tail
	Р	z = 1.645	B1		z = 1.645 in CV expression, and compare 26.44
		Compare 26.44 with 26.40	A1√		CV, $\sqrt{\text{ on their } z, \text{ rounding to 3 SF correct}}$
		Do not reject H ₀ [can be implied]	M1		Needs \sqrt{n} , correct method & comparison, <i>not</i> $\mu = 26.44$
		Insufficient evidence that time taken has	A1√	8	Conclusion interpreted in context, $\sqrt{\text{on } z}$,
		changed.	711 (Ü	constants in the content, the z,
4	(i)		M1		Standardise with 10 or $\sqrt{10}$ and Φ^{-1}
	()	$\frac{53-50}{\sigma/\sqrt{10}}$ < 2.326	A1		Both sides same sign, $\sqrt{10}$, don't worry about <
			B1		2.326 or 2.33 seen
		$\sigma > 4.08$ AG	A1	4	Convincingly obtain $\sigma > 4.08$ to 3 SF, one other step
		[Allow≥]			[SR: Substitution: standardise & substitute 4.08 M1;
		[Allow 2]			0.0101 A1; 4.07 or 4.075 tried, M1; full justification A1]
	(ii)	P(Type I) = 0.01 used, e.g. Geo(0.01)	M1		Not enough merely to state $p = 0.01$
		$0.99^4 \times 0.01$	M1		$p^4 \times q$
		= 0.0096	A1	3	Answer, a.r.t. 0.0096
5	(i)	$\int_{0}^{1} 3(x^{2} + 4) x = 3 \left[x^{3} + x^{5} \right]^{1} = 1/51$	M1		Attempt $\int_{-1}^{1} x^2 f(x) dx$
		$\int_{-1}^{1} \frac{3}{4} (x^2 - x^4) dx = \frac{3}{4} \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_{-1}^{1} [= 1/5]$			v -1
		$1/5 - 0^2$	A1		Correct indefinite integral
		= 1/5	B1		Mean 0 clearly indicated
	·	- 1/3	A1	4	Answer 1/5 or a.r.t. 0.200, don't need $\mu = 0$
	(ii)		D1		Compat another dan't mand (() 11 Dan't 11 (C
			B1		Correct graph, don't need $f(x)$ as well. Don't allow if graph goes further below axis than "pips".
		(a)			Don't worry too much about exact shape
		(a) Areas agual mara arread aut	M1		Mention areas or total probability
		(b) Areas equal, more spread out,	A1		Convincing argument, not just "flatter"
1		so g _{max} lower (c) W greater	B1dep		W greater
		as more spread out	depB1	5	with convincing reason
		as more spread out		-	

6	(c)	Do(2.275)	M1		Da(10/9) stated or implied
6	(a)	Po(2.375)			Po(19/8) stated or implied
		$e^{-2.375} \left(\frac{2.375^3}{3!} + \frac{2.375^4}{4!} \right) = [0.2079 + 0.1233]$	M1 A1		One correct Poisson formula, <i>not</i> tables Complete correct expression, including addition
		,	A1 A1	4	
		= 0.3310	Ai	4	Answer, a.r.t. 0.331 [SP: Po(2) or Po(2,4) and tables M1]
	(b)	(i) $n \text{ large OR} n > 50$	D1		[SR: Po(2) or Po(2.4) and tables, M1]
	(b)	``	B1 B1	2	Or equivalent [Allow ≤ and ≥ throughout]
		$p \text{ small OR} \qquad np < 5$	DI	2	Or equivalent, e.g. $np \approx npq$, or $p < 0.1$
		1	M1		[Treat "np < 5, npq < 5" as single wrong statement]
		(ii) $B(108, \frac{1}{36})$	M1		Correct binomial distribution stated or implied
		$\approx Po(3)$	A1		Po(np), $$ on their n, p
		$1 - P(\le 3) = 1 - 0.6472$	M1		Po(3)
		= 0.3528	A1	5	Use Po tables, "1 –", or correct formula, ± 1 term,
7	(;)	Duran ed catalog must a com		3	e.g. 0.1847; a.r.t. 0.353, allow from exact Binomial
/	(i)	Dropped catches must occur	B1	2	"independently", in context, allow "random"
		independently of one another and at	B1	2	"Constant average rate", in context
	(ii)	constant average rate Use: "Reject H ₀ when correct"	M1		["Singly" doesn't gain B1]
	(11)	Po(10)	M1		Find $P(\ge r)$ where $r > \lambda$, e.g. $P(\ge 6)$ from $Po(2)$
Ħ		$P(\ge 16) = 1 - P(\le 15) = 1 - 0.9513$	M1		Po(10) stated or implied [can be recovered in (iii)] Seek biggest prob < 0.05, e.g. 0.0835 or 0.0166,
ed .		$P(\ge 10) - 1 - P(\le 13) - 1 - 0.9313$	IVI I		allow 0.0293 but no other LH tail
her		Probability 0.0487	A1		Answer in range [0.0487, 0.0488], cwd, cwo
eit	(iii)	$H_0: \lambda = 10 \text{ or } 2 \text{ [or } \mu$]	B2		Hypotheses fully correct, allow λ or μ
l in	(111)	$H_0: \lambda = 10 \text{ of } 2 \text{ [of } \mu$] $H_1: \lambda > 10 \text{ or } 2 \text{ [or } \mu$]	DZ		[SR: one error, B1, but r or R or x or \overline{x} : B0]
dec		- , -	A1		
var		α : $P(\ge 14) = 1 - 0.8645 = 0.1355$ > 0.05	B1		$p \in [0.135, 0.136]$ from Po(10) Compare explicitly with 0.05 or 0.0487
av			A1√		$\sqrt{\text{on answer from (ii)}}$
pe 1		β: Critical region $r \ge 16$, $p = 0.0487$ Compare $r = 14$	B1√		v on answer from (ii)
Marks can be awarded in either part		Do not reject H ₀ [can be implied]	M1		Method correct, $\sqrt{\text{ on } p}$, must be upper tail and " \geq "
.ks		Insufficient evidence of an increase in	A1√	10	Conclusion interpreted in context
Иал		the number of dropped catches	AIV	10	[SR: $P(\le 14) = 0.9165 < 0.95$: (B2 M1) A0 B1 M0A0;
		the number of dropped eatenes			(SR. 1(S 14) = 0.5103 < 0.55. (B2 M1) A0 B1 M0A0, same for P(> 14) or P(= 14)]
					[SR: N(10,10): (ii) 0.05 M0. (iii) (B2) M1 A0 B1 M0A0]
8	(i)	$H_0: p = 0.4$ or $\mu = 4.8$	B2		Both fully correct, B2.
	` /	$H_1: p > 0.4$ or $\mu > 4.8$			[SR: one error, B1, but x or R or r or \bar{x} : B0]
		B(12, 0.4)	M1		B(12, 0.4) stated or implied, e.g. 0.9972 or 0.9847
		$P(\ge 9) = 1 - 0.9847 = 0.0153$	A1		Or: CR is ≥ 9 and $p \in [0.015, 0.0153]$
		< 0.05	B1√		Explicitly compare with 0.05, or 9 with \geq 9, $$ on $<$
		Reject H ₀ [can be implied]	M1		Reject H_0 , $$ on probability, must be " \geq "
		Significant evidence of increase in	A1√	7	Conclusion interpreted in context
		proportion of audience members who	'	•	[SR: $P(\le 9)$ or $P(= 9)$ or $P(> 9)$: (B2 M1) A0 B1 M0A0]
		know sponsor's name			[SR: N(4.8, 2.88): (B2) M1 A0 B0 M0A0]
	(ii)	N(160, 96)	B1		Normal, mean 160
			B1		Variance (or SD) 96 [96/400: B2M0]
		$\frac{(x-0.5)-160}{} = 1.645$	M1		Standardise unknown with np and \sqrt{npq} or npq , &
		$\frac{(x-0.5)-160}{\sqrt{96}} = 1.645$	A1		equate to Φ^{-1} ; $\sqrt{96}$ and signs correct, ignore cc
			B1		RHS = 1.645
		Solve to find $x = 176.6$	M1		Solve [implied by 177 or 176.6 or 176.1]
		Minimum value is 177	A1	7	177 only, from 176.6, CWO [cc error: 6 ex 7]

4734 Probability & Statistics 3

	1 761.2^2			
1 (i)	$\frac{1}{99}(6115.04 - \frac{761.2^2}{100})$	M1		AEF
	=3.240	A1	2	
(ii)	761.2/100±z√(3.24/100)	M1		z= 1.282, 1.645, or 1.96
	z = 1.96	B1 A1	2	Allow from 2-2.21, allow 7.07 but not from
	(7.26,7.96)	AI	3	Allow from σ^2 =3.21; allow 7.97 but not from wrong σ . Allow 4 or 5 SF but no more.
(iii)	None necessary, since sample size large			OR:None necessary, <i>n</i> large enough for
	enough for sample mean to have a normal distribution	В1	1	Central Limit theorem to apply
	uistrioution	Di	[(6]
2	$(\overline{x}-12.6)/\sqrt{0.1195/10}$	M1		Any variable, correct mean, $/10$, ignore z
	1.383 seen	A1 B1		All correct
	Solve for variable	M1		Allow any symbol (<,>,=)
	$\overline{x} \ge 12.75$	A1	5	
			[5]	
2(;)	Choice of newspaper is independent of level			
3(i)	of income	В1	1	Or equivalent
	11 10 4	D1		M 1 : 1: 11 12 20 0 00152
(ii)	Use df=4 EITHER: CV 13.28, from df=4 or sig. level	B1 M1		May be implied by 13.28 seen or 0.0152 From tables
	Largest significance level is 1%	B1		Accept 0.01
	OR: UseP($\chi^2 > 12.32$)			Use of calculator
	Largest significance level is 1.52%	B2		Accept 0.0152
		S	[4] R·	from df=6: CV 12.59 used ; SL=5% :
		, L)1 \ .	B0M1B1
	c ¹ 4 2 . c ² 4			.
4(i)	$\int_0^1 \frac{4}{3} x^3 dx + \int_1^2 \frac{4}{3x^3} dx$ Limits seen anywhere	M1		For both integrals OR 1 - $\int_2^\infty \frac{4}{3x^3} dx$
	$\left[\frac{x^4}{3}\right]_0^1 + \left[-\frac{2}{3x^2}\right]_1^2$	A1		For both OR $1 - \left[-\frac{2}{3x^2} \right]_2^{\infty}$
	$\begin{bmatrix} 3 \end{bmatrix}_0$ $\begin{bmatrix} 3x^2 \end{bmatrix}_1$	711		$\begin{bmatrix} 3x^2 \end{bmatrix}_2$
	5/6	A1	3	
(ii)	EITHER: $\int_{0}^{1} \frac{4}{3} x^{3} dx = \frac{1}{3}$	M1		
	< 1/2	A1		
	Median must exceed 1	A 1		
	OR:	M1		Attempt to find median
	$m=\sqrt{(4/3)}$ > 1 AG	A1	2	M0 for 1.5 ^{1/4}
	> 1 AG	A1	3	Accept 1.15

(iii)	$\int_{0}^{1} \frac{4}{3} x^{4} dx + \int_{1}^{\infty} \frac{4}{3x^{2}} dx$	M1		Correct form for at least one integral
	$[4x^{5}/15] + [-4/(3x)]$ 1.6	B1 A1	3	Both integrals correct without limits AEF
 (iv)	$E(X^2) = \dots + \int_1^\infty \frac{4}{3x} \mathrm{d}x$	M1		For second integral
	Second integral = $\left[\frac{4}{3} \ln x \right]_{1}^{\infty}$	A1		
	This is not finite, (so variance not finite)	A1	3 12]	AEF
(i)	Justify a relevant Poisson approximation $E(A)=75\times0.022 \ (=1.65), E(B)=90\times0.025 \ (=2.25)$ Sum of two independent Poisson variables X has a	M1 B1B	31	Using $n > 50$ or n large; $np < 5$ or p small (<0.1 or $np \approx npq$
	Poisson distribution $Mean m = 3.9$	A1 B1	5	Accept Po(3.9)
(ii)	$1 - P(\leq 5)$	M1		Or From Po(m) Accept ≤ 4 ;
	0.1994	A1	2 [7]	OR Exact 1 – sum of at least 5 correct terms From calculator or tables, art 0.20
6 (i)	Use $p_s \pm zs$	M1		
	z=2.326	B1		
	$s = \sqrt{(0.12 \times 0.88/50)}$	A1 A1	4	Or (49)
	(0.013,0.227) Allow limits if penalised in Q1	A1		Or (0.012,0.228) from 49
 (ii)	$z(0.12\times0.88/n)^{1/2}$	M1		Any z
(11)	< 0.05	A1		Allow =
	Solve to obtain	M1		Must contain \sqrt{n}
	n > 228.5 $n \approx 229 \text{ or } 230$	A1 A1	5	Accept = Must be integer
	n ~ 22) 01 230	Λ1		9]
7 (i)	Each population of test scores should have	D.1		OR: Variances equal and normal distns B
	normal distributions with equal variances	B1 B1	2	Context B1
(ii)	EITHER:Cannot test for normality from data			Not variances are not equal
` '	OR: Sample variances are close enough to			- 1
	accept population variances equal	B1	1	

(111)	H_0 : $\mu_B = \mu_G$, H_1 : $\mu_B > \mu_G$ $s^2 = (23 \times 86.79 + 17 \times 93.01)/40$ = 89.4335	B1 M1 A1	For both. No other variables. Allow words Finding pooled estimate of variance May be implied by later value of <i>t</i>
	$t = (1238.4/18 - 1526.8/24)/\left[s^2(18^{-1} + 24^{-1})\right]^{1/2}$	M1	With pooled estimate of variance
		A1	All correct
	= 1.758	A1	art 1.76, or -
	Use CV of 1.684	B1	Consistent
	1.758 > 1.684	M1	Compare correctly with their CV (t value)
	Reject H ₀ and accept there is sufficient		1
	evidence at the 5% significance level that		Not assertive
	<u> </u>		Not assertive
	teenage boys worry more, on average than	41/0	A Dr. 4 1 1 7 7 0
	teenage girls.	A1√ 9	Ft on their 1.758
			SR:Using $s^2 = 93.01/18 + 86.79/24$:
			B1M0A0M1A0A1(for 1.749) B1M1(from
			1.645 or 1.684)A1
			Max 6/9
		12	
Q (;)	$\sum xf/80 = 1.9 \qquad AG$	12 B1	With evidence
0 (1)			
	$\sum x^2 f/80 - 1.9^2$	M1	Or \times 80/79
	1.365 or 1.382	A1 3	
····	D : 1: 4: 1 4: 1 1		
(11)	Poisson distribution requires equal mean	D.I	3.6 1 2 12 4 1
	and variance	B1	May be indicated
	EITHER:		
	No, mean and variance differ significantly		
	OR:		
	Yes, indicated by sample statistics taking		
	into account sampling error	B1 2	
(iii)			Or from tables
()	$e^{-1.9}1.9^3/3!$	B1	Of Holli tables
()	$e^{-1.9}1.9^3/3!$ ×80	B1 B1 2	Of Holli tables
	×80		Of Holli tables
	×80 Considering sample as random selection of	B1 2	
	Considering sample as random selection of all similar matches		
	×80 Considering sample as random selection of all similar matches H ₀ : Poisson suitable model	B1 2	
	Considering sample as random selection of all similar matches	B1 2	
	×80 Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells	B1 2 B1 B1	
	$\times 80$ Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60$	B1 2 B1 B1 M1	Any two correct
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02$	B1 2 B1 B1 A1	Any two correct All correct
	Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells 0.97 ² /11.97+7.73 ² /22.73+11.40 ² /21.60 + 2.32 ² /13.68+5.02 ² /10.02 =11.63	B1 2 B1 B1 M1 A1 A1	Any two correct All correct art 11.6
	\times 80 Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02$ =11.63 CV 7.815	B1 2 B1 B1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875
	Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells 0.97 ² /11.97+7.73 ² /22.73+11.40 ² /21.60 + 2.32 ² /13.68+5.02 ² /10.02 =11.63	B1 2 B1 B1 A1 A1 B1 *dep	Any two correct All correct art 11.6
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$	B1 2 B1 B1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60$ $+2.32^2/13.68+5.02^2/10.02$ =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson	B1 2 B1 B1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$ There is sufficient evidence that a Poisson distribution is not a suitable model	B1 2 B1 B1 M1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60$ $+2.32^2/13.68+5.02^2/10.02$ =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson	B1 2 B1 B1 M1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$ There is sufficient evidence that a Poisson distribution is not a suitable model	B1 2 B1 B1 M1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$ There is sufficient evidence that a Poisson distribution is not a suitable model	B1 2 B1 B1 M1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05
	Considering sample as random selection of all similar matches H_0 : Poisson suitable model Combine last two cells $0.97^2/11.97+7.73^2/22.73+11.40^2/21.60 + 2.32^2/13.68+5.02^2/10.02 = 11.63$ CV 7.815 $11.63 > 7.815$ There is sufficient evidence that a Poisson distribution is not a suitable model	B1 2 B1 B1 M1 A1 A1 B1 *dep	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$
(iv)	Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells 0.97²/11.97+7.73²/22.73+11.40²/21.60 + 2.32²/13.68+5.02²/10.02 =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 2 B1 B1 M1 A1 A1 A1 B1 *dep M1dep A1 A1 8	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$ M1A1A1 CV=9.448 or p = 0.0152, B1*dep the M1dep*
(iv)	Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells 0.97²/11.97+7.73²/22.73+11.40²/21.60 + 2.32²/13.68+5.02²/10.02 =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 2 B1 B1 M1 A1 A1 A1 B1*dep M1dep A1√ 8	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$ M1A1A1 CV=9.448 or p = 0.0152, B1*dep the M1dep* Or other valid observation
(iv)	Considering sample as random selection of all similar matches H ₀ : Poisson suitable model Combine last two cells 0.97²/11.97+7.73²/22.73+11.40²/21.60 + 2.32²/13.68+5.02²/10.02 =11.63 CV 7.815 11.63 > 7.815 There is sufficient evidence that a Poisson distribution is not a suitable model confirming (or not) the answer to part (ii)	B1 2 B1 B1 M1 A1 A1 A1 B1*dep M1dep A1√ 8	Any two correct All correct art 11.6 O OR p=0.00875 OR 0.00875 < 0.05 Ft (ii) SR: If last cells not combined: $\chi^2 = 12.3$ M1A1A1 CV=9.448 or p = 0.0152, B1*depthe M1dep* Or other valid observation Or CV would change

4735 Statistics 4

				<u> </u>
1 (i)	Use $P(A) + P(B) - P(A \cap B) \le 1$, $P(A \cap B) = 0$	B1	1	AEF
 (ii)	Use $P(A B)=P(A\cap B)/P(B)$ Use $P(A\cap B)=0$ with argument with $x\neq 0$	M1 A1	AEF e.g 2	g. Inependent if $(A \cap B) = P(A)P(B) = x^2$, $P(A \cap B) = 0$, $x \neq 0$, so A and B are not indep.
 (iii)	Use $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$)		
	$-P(B\cap C)-P(C\cap A)+P(A\cap B\cap C)$	M1		Or equivalent. Allow one sign error
	Use $P(A \cap B) = 0$; $P(A \cap B \cap C) = 0$	A1		For both
	$P(B \cap C) = 2x^2; P(C \cap A) = 2x^2$	A1		For both
	Substitute and obtain required result AG	A1	4 (7)	
2 (i)	Wilcoxon test requires a symmetric			
()	distribution not supported by the diagram	B1	1	Or equivalent
(**)			D.1	N 1 (1 (1 m) 0
(ii)	H_0 : $m = 1.80$, H_1 : $m > 1.80$	1.61	B1	Needs "population median" if word
	Use sign test Number exceeding 1.8 = 20	M1 A1		
	Use B(30,0.5), $P(\ge 20)$ Or $P(\le 10)$	M1		
	0.0494	A1		
	Compare with 0.05 correctly 2.008	M1		OR: 1.645 if $N(15,7.5)$, $z = 1.643$, 1.816,
	Conclude there is significant evidence that the median time exceeds 1.80 sec	A1√	7 (8)	used; OR CR ($X \ge 20$) ft p or z
3 (i)	Marginal distribution of <i>X x</i> 0 1 2 3			
	p 0.27 0.23 0.32 0.18	B1		
	1×0.23+2×0.32+ 3×0.18	M1		
	=1.41	A1	3	
 (ii)	P(Y>X)=0.08+0.05+0.03+0.08+0.06+0.07	M1		
(11)	= 0.37	A1	2	
(iii	1) Use $P(Y>X \cap X>0)/P(X>0)$ P(X>0)=0.73	M1		From marginal distribution
	$P(X \ge 0) = 0.75$ $P(Y \ge X \cap X \ge 0) = 0.08 + 0.06 + 0.07$	A1 A1		From marginal distribution
	21/73	A1	4	AEF
(iv	The director cannot conclude independence	M1		Idea that independence implies cov = 0 but not the reverse
	from cov. So director's conclusion incorrect OR: Eg $P(X=0 \cap Y=0)=0.11$,	M1		out not the reverse
	OR. Eg $P(X=0+17=0)=0.11$, $P(X=0)P(Y=0)=0.27 \times 0.29 \neq P(X=0 \cap Y=0)$		2 (11)	

4 (i)	Variances seem not to be equal	B1	1	
 (ii) "averag	H_0 : $m_M = m_A$, H_1 : $m_M \neq m_A$		B1	Both hypotheses, AEF. Not
averag	$R_m = 40, m(m+n+1) - R_m = 72$	M1		Both found
	W=40	A1		A0 if no or wrong 72
	CR: $W \le 38$	B1		
	40 not in CR, so do not reject H_0 Insufficient evidence that median times di	M1 fferA1	6 (7)	Or equivalent In context. B1 if no M1 but conclusion correct Allow average here
5 (i)	$a+b = \frac{3}{4}$	B1		From M(0)=1
(1)	$M'(0)=3^3/8$	M1		110111112(0)
	$\frac{1}{2} + 3a + 4b = 3\frac{3}{8}$	A1		AEF
	Solve simultaneously	M1		Elimination or substitution
	$a = \frac{1}{8}$ AG	A1		
	<i>b</i> = 5/8	A1	6	
 (ii)	$M''(t) = e^{2t} + \frac{9}{2}e^{3t} + 10e^{4t}$	B1		
(11)	$M''(0) - (M'(0))^2$	M1		
	$M''(t) = e^{2t} + {}^{9}/{}_{8}e^{3t} + 10e^{4t}$ $M''(0) - (M'(0))^{2}$ ${}^{97}/{}_{8} - (3^{3}/\!\!{}_{8})^{2} ; {}^{47}/{}_{64}$	A1A1	4	
(iii)	x=2, 3, 4	B1	1 (11)	
6 (i)	P(Y>v) = 1 - F(v)	M1		Allow any variables
()	P(Y>y) = 1 - F(y) = a^3/y^3	A1		
	$P(S > s) = P(\text{ all 3 values } > s) = (a/s)^9 \text{ AG}$	A1		
	$\mathbf{f}(s) = d/ds(1 - (a/s)^9)$	M1		
	$\int_{a} a^9$			
	$= \begin{cases} 9\frac{a^9}{s^{10}} & s \ge a, \\ 0 & s < a \end{cases}$	A1	5	
	$\int_{a}^{\infty} \frac{a^9}{s^9} \mathrm{d}s$			
(ii)	$\int_a \frac{1}{s^9} ds$	M1		
	= 9a/8	A1		
	S not unbiased since this not equal to a	M1		
	$T_1 = 8S/9$	B1√	4	$\operatorname{Ft} \operatorname{E}(S)$
(iii)	$Var(T_1) = a^2/63$, $Var T_2 = a^2/9$	M1		Correct method
	$Var(T_1) < Var(T_2), T_1$ is more efficient	A1 for $A1$	3	Comparison, completion $$ one variance correct with same dimensions
 (iv)	$t_1 = 4.0, t_2 = 5.4$	B1		Both
(iv)	$t_1 = 4.0, t_2 = 5.4$ From data $a \le 4.5$ and $t_2 > 4.5$	B1 B1B1	3 (15)	Both AEF

7 (i)
$$G(1) = 1$$
 $M1$ $a = 2$ $A1$ 2

(ii) $(1+2t)/(4-t) = c (1+2t)(1-\frac{1}{4}t)^{-1}$ $M1$ $c = \frac{1}{4}(1+2t)(1+\frac{1}{4}t+(\frac{1}{4}t)^2+...)$ $A1$ $Coefficient of $t^3 = \frac{1}{4}[(\frac{1}{4})^3+2(\frac{1}{4})^2]$ $M1\sqrt{}$ With 2 terms from previous line $A1$ $A1$$

(iii)
$$H(t) = \left(\frac{1+2t}{4-t}\right)^3$$
 B1
 $H'(t) = 3\left(\frac{1+2t}{4-t}\right)^2 \left[\frac{2(4-t)+1+2t}{(4-t)^2}\right]$ M1A1
 $E(Y) = H'(1)$ M1
 $= 3$ A1 5

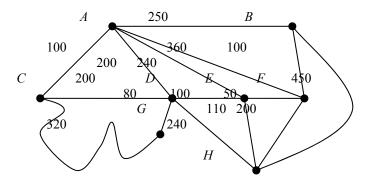
(iv)
$$H(1)=p_0+p_1+p_2+p_3+p_4+\ldots=1$$

 $H(-1)=p_0-p_1+p_2-p_3+p_4-\ldots=-\frac{1}{1_{25}}$
Add: $2(p_0+p_2+p_4+\ldots)=1-\frac{1}{1_{25}}$ M1 With sufficient detail $\frac{1}{2}(1-\frac{1}{1_{25}})$ AG A1 2 (13)

4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only) (Not showing effect on a specific list)	B1	Accept bubbling to left unless inconsistent with part (ii): Smallest/first number	[1]					
	(ii)	2 1 3 4 5 horizontally or vertically (may see individual comparisons/swaps) [For reference: original list was 3 2 1 5 4]	M1	Or bubbling to left: 1 3 2 4 5 Watch out for shuttle sort used						
		4 comparisons and 3 swaps (both correct)	A1	If not stated, assume that comparisons come first	[2]					
	(iii)	1 2 3 4 5	M1	FT from their first pass with their bubbling if possible						
		One (more pass after this)	A1	Watch out for 'One swap (in 2 nd pass)'	[2]					
	(iv)	$(3000 \div 500)^2 \times 0.2$	M1	$6^2 \times 0.2$ or $8 \times 10^{-7} \times 9 \times 10^6$ or any equivalent calculation	[2]					
	= 7.2 seconds A1 cao UNITS [2 Total = 7									

(ii) eg M1 Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected B1 is not connected [3]	2	(i)	eg - Graph is not simple - Two of the vertices are joined by two arcs (if appropriate) - It has a 'loop' (if appropriate) - For a simple graph each vertex must have order 3 or less	M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not simple (although it is connected). Need not use the word 'simple'.	[3]
Total = 6		(ii)		A1	orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected	[3]


(ii) $x + 2y = 6 \text{ and } y = x + 2 \Rightarrow (\frac{2}{3}, 2\frac{2}{3})$ $y + 2x = 12 \text{ and } y = x + 2 \Rightarrow (3\frac{1}{3}, 5\frac{1}{3})$ $y + 2x = 12 \text{ and } x + 2y = 6 \Rightarrow (6, 0)$ $(iii) (\frac{2}{3}, 2\frac{2}{3}) \Rightarrow 11\frac{1}{3}$ $(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$	Follow through if possible Calculating from their lines or implied from either A mark
$(3\frac{1}{3},5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ M	(*) */ ****
At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ Maximum value = $32\frac{2}{3}$ A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3},5\frac{1}{3})$ identified (ft) $32\frac{2}{3}$ (air 32.6 to 32.7) (ft)
(iv) $5 \times 3 \frac{1}{3} + k \times 5 \frac{1}{3} \ge 5 \times 6 + k \times 0$ $\Rightarrow k \ge 2.5$ Minute Matrix A1	$5\times3\frac{1}{3} + k\times5\frac{1}{3}$ (ft) or implied $5\times6 + k\times0$ or 30 or implied Greater than or equal to 2.5 (cao)

4 (i) M1 Both 6 and 5 shown at B	
1 0 4 5 Doil o and 3 shown at B	Ì
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 6 (9) (16) 7 12 A1 No extra temporary labels	
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & \\ \hline & & & & & $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[7]
Route = $A - E - B - G - H - K$ Length = 14 metres	
(ii) Without using CJ : Route = $A - E - B - G - F - J$ Length = 21 metres B1 $A - E - B - G - F - J$ 21	[2]
(iii) More than 2 metres M1 2 (cao) A1 More than, or equivalent	
(Answer of 'more than 7 metres' or '7 metres' \Rightarrow M1, A0) (Answer of 3 or \geq 3 \Rightarrow SC1)	[2]
Total =	11

5	(i)	A B	E x y	3 - 3 -	<i>x y</i>	B1 B1 B1	AW = 3 - x $BW = 3 - y$ $CE = 4 - x - y$, in any form	
		С	4 - x - y	x +	- y - 1	M1	An appropriate calculation for their	
			-200y + 140(3- <i>y</i>)		A1	table Leading to given result	[5]
			(4-x-y) + 280(• //		711	Leading to given result	ا ا
	(ii)	= £(2090 - 20x + 4x)		(A	J)			
		\Rightarrow -20x + 40y	· —			B1	Showing where the given inequality comes from	
		\Rightarrow -x + 2y \leq 3		(A	G)			[1]
	(iii)	50(3-x) + 40(3-x) + 40(3-x) + 10x		-1)		M1 A1	Follow through their table Correct expression	
		So need to ma		, (A	.G)		210 + 10x + 20y	[2]
	(iv)	$P \qquad x$	<i>y s</i> -2 0	<i>t</i> 0	-		Rows and columns may be in any order	
		1 -1 0 -1	-2 0 2 1	0	3	B1 B1	-1 -2 in objective row Constraint rows correct	[2]
		0 1	1 0	1	3	ВІ	Constraint rows correct	[2]
	(v)	Pivot on the 2	ı î		T	B1	Correct choice of pivot from y	
		1 -2 0 -0.5	0 1 1 0.5	0	1.5		column Follow through their tableau	
		0 1.5	0 -0.5	1	1.5	M1	and valid pivot if possible Pivot row correct	
		Pivot on 1.5 in	n the x colum	n		A1	Other rows correct	
		1 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1\frac{1}{3}$	5	M1	Correct choice of pivot	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Follow through their tableau and valid pivot if possible	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Correct tableau	[2]
			1	·I	ı	- B1	Correct answer only	[6]
		x = 1, y = 2					Total =	16
I							Total =	10

6	(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A , B , C and D	B1	Identifying odd nodes (may be implied from working)	
		AB = 250 $AC = 100$ $AD = 200$	M1	Pairing odd nodes (all three pairings considered)	
		$CD = \underline{200}$ $BD = \underline{250}$ $BC = \underline{350}$ 550	A1	M mark may not be implied 350 as minimum	
		Repeat AC and $BFED = 350$ Length of shortest route = 3350 metres	B1	3350 m or 3.35 km UNITS	[4]
	(iii)	C is an odd node, so we can end at		Working need not be seen	
		another odd node. AB = 250 $AD = 200$ $BD = 250$	M1	May be implied from answer	
		Repeat $AD = 200$ Length of route = 3200 metres	A1 B1	3200 B	[3]
		Route ends at B	D1	B	
	(b)(i)	D-G-C-A-E-F-B-H-D	M1	Correct cycle If drawn then arcs must be directed 1580	
		1580 metres	A1 B1	Identifying the stall	[3]
		A - C - D - G then method stalls			
	(ii)	BF = 100 $FE = 50$ $ED = 100$ $D = F$	M1	Use of Prim's algorithm to build tree (e.g. an attempt at list of arcs or order of adding vertices). NOT Kruskal Correct arcs chosen (listed or seen on	
		DG = 80	A1	A correct tree with vertices labelled	
		EH = 110 $DC = 200$	B1	Order stated or clearly implied 640	
		Order of adding nodes: <i>B F E D G H C</i>	A1 B1		[5]
		Total weight of tree = 640 metres			
	(iii)	Lower bound = $640 + 100 + 200 = 940$ 940 metres < shortest tour < 1580 metres	M1 A1	300 + weight of their tree their 940 ≤ length ≤ their 1580	
				(condone use of < here)	[2]
				Total =	18

For reference:

4737 Decision Mathematics 2

1(a)	(i)	$ \begin{array}{c} A & & & P \\ B & & & Q \\ E & & & R \\ F & & & T \\ G & & & & U \end{array} $	B1	A correct bipartite graph	[1]
	(ii)	A P B Q E R T T	B1	A second bipartite graph showing the incomplete matching correctly	
	(iii)	F-R-B-P	B1	This path in any reasonable form	[1]
	(111)		וטו	This pain in any reasonable form	
		A = T $B = P$ $E = U$ $F = R$ $G = Q$	B1	This complete matching	[2]
	(iv)	A = P $B = T$ $E = U$ $F = R$ $G = Q$	B1	This complete matching	[1]
(b)	(i)	Hungarian algorithm finds the minimum cost matching, subtract from 10 to convert a maximising problem into a minimising problem. Column <i>X</i> is a dummy column (dummy task) to	B1	An appropriate reference to maximising/minimising 'Dummy' or 'square table' or	
		make the table square		equivalent	[2]
	(ii)	C D L S X H 1 2 4 4 10 I 2 4 7 6 10 J 4 6 5 9 10 K 3 8 7 7 10 N 3 7 7 5 10		For reference only	

	Reduce colur	nns						
	0	0	0	0	0	M1	Either reducing columns or	
	1	2	3	2	0		reducing rows of 5×5 matrix	
	3	4	1	5	0			
	2 2	5	3	3	0	A1	This reduced matrix	
				1	0		Correct answer only	
	Rows are alre	eady redi	ucea					
	Augment by	1						
	0	0	0	0	1	M1	A reasonable attempt to augment	
	0	1	2	1	0			
	2	3	0	4	0			
	1	5	2	2	0	A1	This final matrix	
	1	4	2	0	0		Correct answer only	
			•		_			
		Iarry is t annos or			***			
		ack is in				B1	This matching, indicated in any	
	N = S N	Vadia is i	in charg	e of sou			way	
	(8	and Kerr	y is not	used)				
	Total score =							
	(10-2) + (10-2)		-5) + (10	(0-5) + (1)	0-10)	M1		
	= 26	, (, (, ,	,	A1	A reasonable attempt, 14 or $24 \Rightarrow M1$, A0	[7]
						711	$\begin{array}{c} 14 \text{ of } 24 \rightarrow \text{W1}, \text{A0} \\ 26 \end{array}$	[/]
(iii)		C	D	L	S			
		2	4	7	6			
		3	8	5 7	9 7	В1	This 4×4 matrix (need not have row	
		3	7	7	5	<i>D</i> 1	and column labels)	
				·			,	
	Reduce colur						Or reduce rows 0 2 5 4	
	<u> </u>	2	2	0	4		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		1	4	2	2	M1	0 5 4 4	
		1	3	2	0		0 4 4 2	
							The same desired and the same	
	Then reduce				. 1		Then reduce columns	
		0	0	2	1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		2	2	0	4	A1	0 0 0 3	
	<u> </u>	0	3	1	1		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		1	3	2	0		0 2 3 0	
	I = D	I = I	K	- <i>C</i>	N = S	B1	This matching indicated in any way	[41
	I - D	J-L	Λ	– C	$p_{\mathbf{v}} - \mathbf{s}$	ы	Correct answer only	[4]
						ı	·	l = 18

2	(i)	-2	B1	Accept 'loses 2' or equivalent	[1]
	(ii)	Column W is dominated by column Y .	B1	Stating <i>Y</i> (but not <i>W</i> dominates <i>Y</i>)	
		If Rowena plays P, Collette loses 2 with W but	D1	Correct comperisons cynlained	
		1 with Y. If Rowena plays Q, Collette loses 1 with W but	B1	Correct comparisons explained, 2 > 1 and 1 > -1, or equivalent	[2]
		gains 1 with Y.		2 - 1 and 1 - 1, or equivalent	[4]
	(iii)	Collete			
		[W] X Y Z Row min	M1	Determining row minima and	
		Rowena $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		column maxima, or equivalent.	
		Q [1] 2 -1 -4 -4 Col max [2] 2 1 3		Must be correct, including <i>W</i> if shown.	
				May not be implied from answers.	
		Play-safe for Rowena is P	A1		
		Play-safe for Collette is <i>Y</i>	A1	P stated	[3]
			5.4	Y stated	
	(iv)	-3p + 2(1-p) = 2-5p Y gives $2p-1$	B1	2-5 <i>p</i> in simplified form	
		Z gives $7p-4$	B1	Both $2p-1$ and $7p-4$ in any form	[2]
	(v)	4 5		Graph must be on graph paper	1-1
	,	3			
			B1	Their lines drawn correctly on a	
		0/2 0/4 0/6 0/8		reasonable scale	
		3	M1	Solving the correct pair of	
		$7p - 4 = 2 - 5p \Rightarrow p = 0.5$	1,111	equations (only) or using graph	
			A1	correctly	
		E = -0.5	B1	0.5, correct answer only	[4]
	(:)	Add 4 throughout matrix to make all values non	B1	-0.5, correct answer only	
	(vi)	Add 4 throughout matrix to make all values non-negative	ы	'Add 4', or new matrix written out or equivalent	
		On this augmented matrix, if Collette plays <i>Y</i>		or equivalent	
		Rowena expects $4p_1 + 3p_2 + 6p_3$, and if Collette	B1	Relating to columns Y and Z	
		plays Z Rowena expects $7p_1 + 0p_2 + 2p_3$		respectively. Note: $4p_1 + 3p_2 + 6p_3$	
				and $7p_1 + 2p_3$ are given in question	
		We are solving a <u>maximin</u> problem.	B1	Or shown on a diagram.	
		<i>m</i> is less than or equal to each of these values since we need find the maximum value of the		For <u>each value of p</u> we look at the	
		worst possible augmented expected pay-off for		minimum output.	
		each value of p			[3]
	(vii)	We use an inequality instead of an equality	B1	So that we can use the Simplex	
		because this is needed to enable the Simplex		algorithm.	[1]
		algorithm to pivot on a row that will increase the value of M			[1]
	(viii)	$p_3 = \frac{3}{7}$	B1	$\frac{3}{7}$	
		$E = \frac{6}{7}$	B1	<u>6</u> 7	[2]
				Tota	l = 18

ANSWERED ON INSERT

		ANSWERED ON INSERT	1		
3	(i)	$\{SA, B, D, G\}, \{C, E, F, T\}$ (given)	M1	Identifying the correct arcs, on a	
		AC = 4, $BC = 2$, $BE = 1$, $DE = 2$, $GE = 5$, $GT = 6$		diagram or list or by using 4, 2, 1,	
		4.2.4.2.5.6		2, 5, 6	
		4+2+1+2+5+6		20.5	[2]
		= 20 litres per minute	A1	20 from a correct calculation	[2]
	(ii)	At most 2 litres per minute can enter G so the arc	B1	Maximum into $G = 2$	[4]
	(***)	GE can carry at most 2 litres per minute	D.1		[1]
	(iii)	At most 8 litres per minute can flow into E	B1	8	
		Flow shown on diagram on insert	M1	A flow of the rate they have claimed	
		Flow in = flow out for each vertex except S , T	1411	through E (irrespective of whether it	
		The wind the work of the country of		is feasible) (directions may not be	
				changed, assume a blank means 0)	
		A feasible flow of 8 litres per minute through <i>E</i>	A 1	No pipe capacities exceeded and	
		•		flow through $E = 8$	[3]
	(iv)	Arrows labelled on diagram		Assume blanks mean 0	
		SA = 0 $AC = 0$ $CF = 0$ $FT = 1$			
		AS = 4 $CA = 4$ $FC = 4$ $TF = 4$	M1	Arrows on arcs on one of the routes	
		4D 2 DC 2 CE 2 EE 4		SACFT, SBET, SDGT labelled	
		AB = 3 $BC = 2$ $CE = 3$ $EF = 4BA = 0$ $CB = 0$ $EC = 0$ $FE = 0$		correctly, or all labels on the route	
		$\begin{bmatrix} BA-0 & CB-0 & EC-0 & FE-0 \end{bmatrix}$		reversed	
		SB = 4 $BE = 0$ $ET = 5$	M1	Arrows on all three routes labelled	
		BS = 1 $EB = 1$ $TE = 1$	1,11	correctly or all reversed	
				,	
		BD = 3 $DE = 2$ $EG = 0$	A1	All arrows labelled correctly, not	
		DB = 0 ED = 0 GE = 5		reversed	
					[3]
		SD = 0 $DG = 0$ $GT = 4$			
	()	DS = 2 $GD = 2$ $TG = 2Amount that flows along SBDET = 2 litres per$	B1	2	
	(v)	min	DI	For arrows on route <i>SBDET</i> :	
			M1	Labels updated consistently	
		SB = 4.2 $BD = 3.1$ $DE = 2.0$ $ET = 5.3$	A1	These all labelled correctly	[3]
		$BS = 1 \ 3$ $DB = 0 \ 2$ $ED = 0 \ 2$ $TE = 1 \ 3$		(and not reversed)	(-1
	(vi)	Route used = $SBCET$	B1	SBCET listed	
	, ,			For arrows on route SBCET:	
		$SB = 4 \ 2 \ 0$ $BC = 2 \ 0$ $CE = 3 \ 1$ $ET = 5 \ 3$		1	
		1 PG 12.5 GP 02 FG 02 FF 12	A1	These all labelled correctly	[3]
		$BS = 1 \ 3 \ 5$ $CB = 0 \ 2$ $EC = 0 \ 2$ $TE = 1 \ 3$		(and not reversed)	
-	(****)	5	B1	Follow through their (v) and (vi) if	
	(vii)	A 4 C 4 F	DI	Follow through their (v) and (vi) if possible	[1]
		4 0 2 2 0 4		Assume blanks mean 0	[±]
		$S \stackrel{4}{\smile} 0 \stackrel{2}{\smile} 2 \stackrel{2}{\smile} 0 \stackrel{4}{\smile} T$			
		$R \longrightarrow R \longrightarrow R$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
<u> </u>					
	(viii)	Eg cut through arcs SA, SB, SD	M1	A suitable cut chosen, indicated in	
		Or arcs AC, BC, BE, DE, DG	A 1	any way	[2]
-			A1	Indicated by listing arcs cut	[2]
				Tota	l = 18

PART (a) ANSWERED ON INSERT

		PART (a	a) ANS	WERED	ON INSER	Γ			
4	(a)	Stage	State	Action	Working	Suboptimal			
						maximum			
			0	0	5	5	D1	5 4 4 : 1 - 1 : 0 : 1 1 - 1 : - 1	
		2	1	0	4	4	B1	5, 4, 4 identified as suboptimal maxima for stage 2	
			2	0	4	4	M1	Transferring suboptimal maxima	
			0	0	3+ 5 = 8	8	IVII	from stage 2 to stage 1 correctly	
				1	4+4=8	8	A1	Correct additions or totals seen	
		1	1	1	2+ 4 = 6			for all rows in stage 1	
				2	4+ 4 = 8	8	B1	8, 8, 10 identified as suboptimal	
			2	1	6+ 4 = 10	10		maxima for stage 1 (cao)	
				2	5+ 4 = 9		M1	Transferring suboptimal maxima	
				0	4+8=12			from stage 1 to stage 0 correctly	
		0	0	1	5+8=13	13	A1	Correct additions or totals seen	
				2	2+10=12		B1	for all rows in stage 0	
		I enoth a	of longe	est path =	= 13		B1	Correct route or in reverse	[8]
					(2;2) - (3;0)			(including (0; 0) and (3; 0))	լօյ
	(b)(i)	110 410	(0,0)		D(3)			Condone directions missing	
	(~)(-)		•					Must be activity on arc	
			/ `				M1	A reasonable attempt, arcs should	
		A(4)		E(4)	J(5)			be labelled	
		B	(5)	F(2)	K	(4)			
			~~		_	_	A1	Any correct form	
		CON		4)	T(A) 🔏			Condone extra dummies	
		C(2)	\setminus H	(6)	L(4)			provided precedences are not	
				\longrightarrow				violated, accept networks with multiple end vertices	
				I(5)				Arc weights may be shown but	[2]
				I(3)				are not necessary	[4]
	(ii)							Follow through their network if	
	(11)			4 5	7 8]		possible	
			_	7		1		Values at vertices may be	
					`			recorded using any consistent	
		/	/					notation	
		0 0	•	5 5	8 9	13 13	M1		
								Forward pass with no more than	
		`		\rightarrow	<		A1	one independent error	
						•	M1	Forward pass correct	
				212			1411	Backward pass with no more than	
			Ŀ	2 3	9 9			one independent error (follow	
							A1	through their 13)	
			Minim	um proie	ect completio	on time = 13 days	D 1	Backward pass correct	
				P. 0)		activities B, G, I		13 stated, cao	[6]
						, ,		B, G, L correct answer only	
	(iii)		lacksquare	;				Not follow through	
				F			B1	A directed dummy from end of G	
			•	<i>r</i>	<u>, </u>		D1	to start of K	
			7		K		B1	A directed dummy from end of <i>G</i> to start of <i>L</i>	[2]
			,	H				Condone extra dummies provided	[2]
				_	1			precedences are not violated	
			Ι		· "			Watch out for K following I	
									l = 18

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2008 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	63	55	47	39	32	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	55	47	40	33	26	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	56	49	43	37	31	0
4124	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	43	37	31	25	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	41	35	29	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	61	53	45	37	29	0
4/20	UMS	100	80	70	60	50	40	0
4729	Raw	72	56	47	38	29	20	0
4129	UMS	100	80	70	60	50	40	0
4730	Raw	72	56	47	38	29	21	0
4730	UMS	100	80	70	60	50	40	0
4731	Raw	72	59	50	42	34	26	0
4/31	UMS	100	80	70	60	50	40	0
4732	Raw	72	60	52	45	38	31	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	28	0
4/34	UMS	100	80	70	60	50	40	0
4735	Raw	72	56	49	42	35	28	0
4133	UMS	100	80	70	60	50	40	0
4736	Raw	72	53	46	39	32	26	0
4730	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	54	47	40	34	0
4/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	33.3	50.4	65.4	77.0	86.6	100	14679
3891	100	100	100	100	100	100	1
3892	57.2	76.7	88.2	94.1	97.6	100	1647
7890	45.4	67.3	82.4	92.1	97.8	100	10512
7891	33.3	66.7	100	100	100	100	6
7892	56.5	77.9	90.0	95.4	98.2	100	1660

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

