4730 Mechanics 3

1	(i) $T = (1.35 \text{mg})(3 - 1.8) \div 1.8$	B1		
	[0.9 mg = ma]	M1		For using $T = ma$
	Acceleration is 8.82ms ⁻²	A1	3	
	(ii) Initial EE =			
	$(1.35\text{mg})(3-1.8)^2 \div (2x1.8)$	B1		
	$[\frac{1}{2} \text{ mv}^2 = 0.54 \text{mg}]$	M1		For using $\frac{1}{2}$ mv ² = Initial EE
	Speed is 3.25ms ⁻¹	A1	3	

2	(i)	M1		For using NEL vertically
	Component is 8esin27°	A 1		
	Component is 2.18ms ⁻¹	A1	3	
	(ii) Change in velocity vertically =			
	$8\sin 27^{\circ}(1+e)$	B1ft		ft 8sin27° + candidate's ans. in (i)
				For using $ I = m x$ change in
	$ I = 0.2 \times 5.81$	M1		velocity
				ft incorrect ans. in (i) providing
	Magnitude of Impulse is 1.16 kgms ⁻¹	A1ft	3	both M marks are scored.

3				For using the principle of
				conservation of momentum in the
		M1		i direction
$0.8x12\cos 60^{\circ} = 0.8a + 2b$		A 1		
		M1		For using NEL
$0.75 \times 12 \cos 60^{\circ} = b - a$		A1		
				For eliminating b; depends on at
[4.8 = 0.8a + 2(a + 4.5)]		DM1		least one previous M mark
a = -1.5		A1		•
Comp. of vel. perp. to l.o.c. after in	mpact is			
	12sin60°	B1		
				For correct method for speed or
		M1		direction
The speed of A is 10.5ms ⁻¹		A1ft		ft $v^2 = a^2 + 108$
				Accept $\theta = 81.8^{\circ}$ if θ is clearly
				and appropriately indicated;
Direction of A is at 98.2° to l.o.c.		A1ft	10	ft tan ⁻¹ $\theta = (12\sin 60^{\circ})/ a)$

4	(i) $[\text{mgsin }\alpha - 0.2\text{mv} = \text{ma}]$	M1		For using Newton's second law
	$5 \frac{dv}{dt} = 28 - v$	A1		AG For separating variables and
	$\left[\int \frac{5}{28 - v} dv = \int dt\right]$	M1		integrating
	(C) - $5\ln(28 - v) = t$	A1		
		M1		For using $v = 0$ when $t = 0$ ft for $ln[(28 - v)/28] = t/A$ from
	$\ln[(28 - v)/28] = -t/5$	A1ft		C + Aln(28 - v) = t previously
	$[28 - v = 28e^{-t/5}]$	M1		For expressing v in terms of t ft for $v = 28(1 - e^{t/A})$ from
	$v = 28(1 - e^{-t/5})$	A1ft	8	ln[(28 - v)/28] = t/A previously
	(ii)			For using $a = (28 - v(t))/5$ or $a = d(28 - 28e^{-t/5})dt$ and substituting
	$[a = 28e^{-2}/5]$	M1		t = 10.
	Acceleration is 0.758ms ⁻²	Alft	2	ft from incorrect v in the form $a + be^{ct}$ ($b \ne 0$); Accept 5.6/ e^2

5	(i)			For taking moments about B or about A for the whole or For taking moments about X for
		M1		the whole and using $R_A + R_B = 280$ and $F_A = F_B$
	$1.4R_A = 150x0.95 + 130x0.25$ or			Lot show t A
	$1.4R_B = 130x1.15 + 150x0.45$ or			
	$1.2F - 0.9(280 - R_B) + 0.45x150 - 1.2F +$			
	$0.5R_{\mathrm{B}}$	A1		
	-0.25x130 = 0			
	$R_A = 125N$	A1		AG
	$R_{\rm B} = 155N$	B1	4	
	(ii)			For taking moments about X for
		M1		XA or XB
	$1.2F_A = -150x0.45 + 0.9R_A$ or			
	$1.2F_{B} = 0.5R_{B} - 130x0.25$	A1		
	F_A or $F_B = 37.5N$	A1ft		$F_B = (1.25R_B - 81.25)/3$
	F_B or $F_A = 37.5N$	B1ft	4	
	(iii) Horizontal component is 37.5N to the			ft H = F or H = $56.25 - 0.75$ V or
	left	B1ft		12H = 325 + 5V
				For resolving forces on XA
	$[Y + R_A = 150]$	M1		vertically
	Vertical component is 25N upwards	A1ft	3	ft $3V = 225 - 4H$ or $V = 2.4H$ -65

6	(i)			For applying Newton's second law
	[0.36 - 0.144x = 0.1a]	M1		11 7 6
	$\ddot{x} = 3.6 - 1.44x$	A1		
	$\ddot{y} = -1.44y \rightarrow \text{SHM}$ or			
	$d^{2}(x-2.5)/dt^{2} = -1.44(x-2.5)$ SHM	B1		
		M1		For using $T = 2\pi/n$
	Of period 5.24s	A1	5	AG
	(ii) Amplitude is 0.5m	B1		
		M1		For using $v^2 = n^2(a^2 - y^2)$
	$0.48^2 = 1.2^2(0.5^2 - y^2)$	A1ft		
	Possible values are 2.2 and 2.8	A1	4	
	(iii) $[t_0 = (\sin^{-1}0.6)/1.2; t_1 = (\cos^{-1}0.6)/1.2]$	M1		For using $y = 0.5\sin 1.2t$ to find t_0 or y
				$= 0.5\cos 1.2t$ to find t_1
	$t_0 = 0.53625 \dots \text{ or } t_1 = 0.7727 \dots$	A 1		Principal value may be implied
	(a)			For using $\Delta t = 2t_0$ or
	$[2(\sin^{-1}0.6)/1.2 \text{ or } (\pi - 2\cos^{-1}0.6)/1.2]$	M1		$\Delta t = T/2 - 2t_1$
	Time interval is 1.07s	A1ft		ft incorrect t ₀ or t ₁
	(b)			From $\Delta t = T/2 - 2t_0$ or $\Delta t = 2t_1$; ft
				2.62 – ans(a) or
	Time interval is 1.55s	B1ft	5	incorrect t_0 or t_1

7	(i)	M1		For using KE gain = PE loss
	$\frac{1}{2}$ mv ² = mga(1 - cos θ)	A1		
	$aw^2 = 2g(1 - \cos\theta)$	B1	3	AG From v = wr
	(ii)			For using Newton's second law
				radially (3 terms required) with accel
	2, 0 5	M1		$= v^2/r \text{ or } w^2r$
	$mv^2/a = mgcos \theta - R \text{ or } maw^2 = mgcos \theta - R$	A1		
	[2 (1 0) 0 Pl	DM1		For eliminating v ² or w ² ; depends on at least one previous M1
	$[2mg(1-\cos\theta) = mg\cos\theta - R]$		4	_
	$R = mg(3\cos\theta - 2)$	A1ft	4	ft sign error in N2 equation
	(iii)			For using Newton's second law
	[mgsin θ = m(accel.) or			tangentially or differentiating
	$2a(\dot{\theta})\ddot{\theta} = 2g\sin\theta(\dot{\theta})$	M1		$aw^2 = 2g(1 - \cos\theta) \text{ w.r.t. t}$
	Accel. $(=a \ddot{\theta}) = g \sin \theta$	A1		2g(1 0000) W.H.L. t
	Accel. $(-ab)$ – gsin b $[\theta = \cos^{-1}(2/3)]$	M1		For using $R = 0$
	$[U = \cos (2/3)]$	1711		ft from incorrect R of the form
				$mg(A\cos +B), A \neq 0, B \neq 0;$
	Acceleration is 7.30ms ⁻²	A1ft	4	accept g $\sqrt{5}$ /3
	(iv)			For using rate of change =
		M1		$(dR/d\theta)(d\theta/dt)$
	$dR/dt = (-3 \text{mgsin } \theta) \sqrt{2g(1-\cos\theta)/a}$			ft from incorrect R of the form
	$div dt = (-3iiigsiii0) \sqrt{2g(1 + \cos \theta)} / d$	A1ft		$mg(Acos +B), A \neq 0$
		M1		For using $\cos \theta = 2/3$
	Rate of change is $-mg \sqrt{\frac{10 g}{3 a}} \text{ Ns}^{-1}$			Any correct form of \dot{R} with
				$\cos \theta = 2/3$ used; ft with from
	$\sqrt{3a}$	A1ft	4	incorrect R of the form mg(Acos
		ΛШ	7	$+B$), A $\neq 0$, B $\neq 0$