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• Read each question carefully and make sure you know what you have to do before starting
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• Answer all the questions.

• Give non-exact numerical answers correct to 3 significant figures unless a different degree of
accuracy is specified in the question or is clearly appropriate.

• You are permitted to use a graphical calculator in this paper.
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1 It is given that f(x) = 2ax(x − 2a)(x2 + a2) , where a is a non-zero constant. Express f(x) in partial

fractions. [5]
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y
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The diagram shows the curve y = f(x). The curve has a maximum point at (0, 5) and crosses the
x-axis at (−2, 0 ), (3, 0) and (4, 0). Sketch the curve y2 = f(x), showing clearly the coordinates of any
turning points and of any points where this curve crosses the axes. [5]

3 By using the substitution t = tan 1
2
x, find the exact value of

�
1
2
π

0

1
2 − cos x

dx,

giving the answer in terms of π. [6]

4 (i) Sketch, on the same diagram, the curves with equations y = sech x and y = x2. [3]

(ii) By using the definition of sech x in terms of ex and e−x, show that the x-coordinates of the points
at which these curves meet are solutions of the equation

x2 = 2ex

e2x + 1
. [3]

(iii) The iteration

xn+1 =
√

2e
xn

e2xn + 1

can be used to find the positive root of the equation in part (ii). With initial value x1 = 1, the
approximations x2 = 0.8050, x3 = 0.8633, x4 = 0.8463 and x5 = 0.8513 are obtained, correct to
4 decimal places. State with a reason whether, in this case, the iteration produces a ‘staircase’ or
a ‘cobweb’ diagram. [2]

5 It is given that, for n ≥ 0,

In = � 1
4
π

0
tann x dx.

(i) By considering In + In−2, or otherwise, show that, for n ≥ 2,

(n − 1)(I
n
+ I

n−2
) = 1. [4]

(ii) Find I4 in terms of π. [4]
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6 It is given that f(x) = 1 − 7

x2
.

(i) Use the Newton-Raphson method, with a first approximation x1 = 2.5, to find the next
approximations x2 and x3 to a root of f(x) = 0. Give the answers correct to 6 decimal places. [3]

(ii) The root of f(x) = 0 for which x1, x2 and x3 are approximations is denoted by α. Write down the
exact value of α . [1]

(iii) The error en is defined by en = α − xn. Find e1, e2 and e3, giving your answers correct to 5 decimal

places. Verify that e3 ≈ e3
2

e2
1

. [3]

7 It is given that f(x) = tanh−1(1 − x
2 + x

), for x > −1
2
.

(i) Show that f ′(x) = − 1
1 + 2x

, and find f ′′(x). [6]

(ii) Show that the first three terms of the Maclaurin series for f(x) can be written as ln a + bx + cx2,
for constants a, b and c to be found. [4]

8 The equation of a curve, in polar coordinates, is

r = 1 − sin 2θ , for 0 ≤ θ < 2π.

(i)

O

� �=

� = 0

The diagram shows the part of the curve for which 0 ≤ θ ≤ α , where θ = α is the equation of the
tangent to the curve at O. Find α in terms of π. [2]

(ii) (a) If f(θ) = 1 − sin 2θ , show that f(1
2
(2k + 1)π − θ) = f(θ) for all θ , where k is an integer. [3]

(b) Hence state the equations of the lines of symmetry of the curve

r = 1 − sin 2θ , for 0 ≤ θ < 2π. [2]
(iii) Sketch the curve with equation

r = 1 − sin 2θ , for 0 ≤ θ < 2π.

State the maximum value of r and the corresponding values of θ . [4]
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9 (i) Prove that � N

0
ln(1 + x) dx = (N + 1) ln(N + 1) − N, where N is a positive constant. [4]

(ii)

O
x

y

1 2 3 68 69 70

The diagram shows the curve y = ln(1 + x), for 0 ≤ x ≤ 70, together with a set of rectangles of
unit width.

(a) By considering the areas of these rectangles, explain why

ln 2 + ln 3 + ln 4 + . . . + ln 70 < � 70

0
ln(1 + x) dx. [2]

(b) By considering the areas of another set of rectangles, show that

ln 2 + ln 3 + ln 4 + . . . + ln 70 > � 69

0
ln(1 + x) dx. [3]

(c) Hence find bounds between which ln(70!) lies. Give the answers correct to 1 decimal place.
[3]
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