4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is $\sqrt{5^2 - 4^2} = 3\text{ms}^{-1}$	B1	AG
	$\sqrt{5^2 - 4^2} = 3$ ms Coefficient of restitution is 0.5	B1	From $e = 3/6$
	Coefficient of restitution is 0.5	[3]	
ii	Direction is vertically upwards	B1	
	Change of velocity is 3 – (-6) Impulse has magnitude 2.7Ns	M1 A1	From $m(\Delta v) = 0.3 \times 9$
	impuise nus magnitude 2011 (s	[3]	11011111((21)) 0.075
2 i	Horizontal component is 14N	B1	
		M1	For taking moments for AB about A or B or the midpoint of AB
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or	IVII	of the indpoint of AB
	$3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or		
	$1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$ Vertical component is 33N upwards	A1 A1	AG
	vertical component is 3314 apwards	[4]	AG .
ii	Horizontal component at C is 14N	B1	May be implied
	[Vertical component at C is	M1	for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2-14^2}$	DM1	For resolving forces at C vertically
	$[W = (\pm)48 - 33]$ Weight is 15N	A1 [4]	
	Weight is 151V	[,]	
3 i	4.2 600 2.2 600 21	M1	For using the p.c.mmtm parallel to l.o.c.
	$4 \times 3\cos 60^{\circ} - 2 \times 3\cos 60^{\circ} = 2b$ $b = 1.5$	A1 A1	
	j component of vel. of $B = (-3\sin 60^\circ)$	B1ft	ft consistent sin/cos mix
	$[v^2 = b^2 + (-3\sin 60^\circ)^2]$	M1	For using $v^2 = b^2 + v_y^2$
	Speed (3ms ⁻¹) is unchanged	A1ft	AG ft - allow same answer following
	[Angle with l.o.c. = $tan^{-1}(3sin60^{\circ}/1.5)$]	M1	consistent sin/cos mix.
	Angle is 60° .	A1ft [8]	For using angle = $tan^{-1}(\pm v_y/v_x)$ ft consistent sin/cos mix
		رما	it consistent sin/cos illix
ii	$[e(3\cos 60^{\circ} + 3\cos 60^{\circ}) = 1.5]$	M1	For using NEL
	Coefficient is 0.5	A1ft [2]	ft - allow same answer following consistent sin/cos mix throughout.
		[4]	consistent surces mix unoughout.

4:		1	Equating Navyton's second law with
4 i		M1	For using Newton's second law with $a = v(dv/dx)$
	$F - 0.25v^2 = 120v(dv/dx)$	A1	a - v(uv/ux)
	F = 8000/v	B1	
	1 - 0000/V		For substituting for <i>F</i> and multiplying
	$[32000 - v^3 = 480v^2(dv/dx)]$	M1	throughout by $4v$ (or equivalent)
	$\frac{480v^2}{v^3 - 32000} \frac{dv}{dx} = -1$	A1	AG
	$v^2 = 32000 \text{ dx}$	[5]	
ii	2		
111	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$	M1	For separating variables and integrating
			Tor separating variables and integrating
	$160 \ln(v^3 - 32000) = -x (+A)$	A1	
	3		For using $v(0) = 40$ or
	$160 \ln(v^3 - 32000) = -x + 160 \ln 32000$	M1	$[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$
	or	A 1 C	6 1 6 4 160 : :
	$160 \ln(v^3 - 32000) - 160 \ln 32000 = -500$	A1ft	ft where factor 160 is incorrect but +ve,
	$(v^3 - 32000)/32000 = e^{-x/160}$	B1ft	Implied by $(v^3 - 32000)/32000 = e^{-3.125}$
	Speed of m/c is 32.2ms^{-1}	B1	(or = 0.0439). ft where factor 160 is
	Speed of nuc is 32.2ms	[6]	incorrect but +ve, or for an incorrect non-
		را	zero value of A
			Zero value of II
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$	B1	
	$[T_{\text{max}} = 18 \times 1/1.5]$	M1	For using $T = \lambda x/L$
	Maximum tension is 12N	A1	
	17.14.1.14.14.14.14.14.14.14.14.14.14.14.1	[3]	
	(a)	M1	For using EE = $\lambda x^2/2L$
			May be scored with correct EE terms in
	2 2		expressions for total energy on release and
	Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52)	A1	total energy at lowest point
	I : CDE 2.0	D1	May be scored with correct GPE terms in
	Loss in GPE = 2.8 mg (27.44m)	B1	expressions for total energy on release and
			total energy at lowest point
ii	$[2.8m \times 0.8 - 11.52]$	M1	For using the p.e. energy
11	$[2.8m \times 9.8 = 11.52]$ $m = 0.42$	A1	For using the p.c.energy AG
	m = 0.42	[5]	AU
	(b)	[2]	For using the p.c.energy KE, PE & EE
	(~)	M1	must all be represented
	$\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2 / (2 \times 1.5)$ or		ft only when just one string is considered
	$\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$	A1ft	throughout in evaluating EE
	Speed at <i>M</i> is 4.24ms ⁻¹	A1ft	ft only for answer 4.10 following
		[3]	consideration of only one string
1			

6 i	$[-mg \sin \theta = m L(d^2 \theta / dt^2)]$ $d^2 \theta / dt^2 = -(g/L)\sin \theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \ \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \ \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin\theta \approx \theta$ because θ is small $(\theta_{\rm max} = 0.05)$ AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ $L = 0.8$	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$[\theta = 0.05\cos 3.5 \times 0.7]$ $\theta = -0.0385$ $t = 1.10 \text{ (accept 1.1 or 1.09)}$	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \{ \theta = \theta_0 \sin nt \}$ not accepted unless the t is reconciled with the t as defined in the question t ft incorrect
v	$\dot{\theta}^{2} = 3.5^{2}(0.05^{2} - (-0.0385)^{2}) \text{ or } \\ \dot{\theta} = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\dot{\theta} = -0.1116) \\ \text{Speed is } 0.0893 \text{ms}^{-1} \\ \text{(Accept answers correct to 2 s.f.)}$	M1 A1ft A1ft [3]	For using $\dot{\theta}^2 = n^2(\theta_o^2 - \theta^2)$ or $\dot{\theta} = -n \theta_o \sin nt$ {also allow $\dot{\theta} = n \theta_o \cos nt$ if $\theta = \theta_o \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect L in (iii) or for $\dot{\theta} = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_o \sin nt$ ft incorrect L ($L \times 0.089287/0.8$ with $n = 3.5$ used or from $ 0.35\sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use $\dot{\theta}$ as v . (Max 1/3) For $v = \pm 0.112$

7 i	Gain in PE = $mga(1 - \cos \theta)$	B1	
	$[\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 - \cos\theta)]$	M1	For using KE loss = PE gain
	$v^2 = u^2 - 2ga(1 - \cos\theta)$	A1	
	$[R - mg \cos \theta = m(\text{accel.})]$		
	$R = mv^2/a + mg\cos\theta$	M1	For using Newton's second law radially
	2	A1	2
	$[R = m\{ u^2 - 2ga(1 - \cos\theta) \}/a + mg\cos\theta]$	M1	For substituting for v^2
	$R = mu^2/a + mg(3\cos\theta - 2)$	A1	AG
		[7]	
ii	$[0 = mu^2/a - 5mg]$	M1	For substituting $R = 0$ and $\theta = 180^{\circ}$
	$u^2 = 5ag$	A1	
	$[v^2 = 5ag - 4ag]$ Least value of v^2 is ag	M1 A1 [4]	For substituting for u^2 (= 5ag) and θ = 180° in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$[0 = u^2 - 2ga(1 - \sqrt{3}/2)]$	M1	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i))
	$u^2 = ag(2 - \sqrt{3})$	A1 [2]	Accept $u^2 = 2ag(1 - \cos(\pi/6))$