4733 Probability \& Statistics 2

1	$\frac{105.0-\mu}{\sigma}=-0.7 ; \frac{110.0-\mu}{\sigma}=-0.5$ Solve: $\begin{aligned} & \sigma=25 \\ & \mu=122.5 \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 6 \end{array}$	Standardise once, equate to Φ^{-1}, allow σ^{2} Both correct including signs \& σ, no cc (continuity correction), allow wrong z Both correct z-values. " 1 -" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu=122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^{2} but not from $\sigma=-25$.
2	$\operatorname{Po}(20) \approx \mathrm{N}(20,20)$ Normal approx. valid as $\lambda>15$ $\begin{aligned} & 1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right)=1-\Phi(1.006) \\ & =1-0.8427=\mathbf{0 . 1 5 7 3} \end{aligned}$	$\begin{array}{\|lr\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{6} \\ \hline \end{array}$	Normal stated or implied $(20,20)$ or $(20, \sqrt{ } 20)$ or $\left(20,20^{2}\right)$, can be implied "Valid as $\lambda>15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{ } 20$ errors $1.0<z \leq 1.01$ Final answer, art 0.157
3	$\mathrm{H}_{0}: p=0.6, \mathrm{H}_{1}: p<0.6$ where p is proportion in population who believe it's good value $\begin{aligned} R \sim \mathrm{~B}(12,0.6) & \\ \alpha: \quad \mathrm{P}(R \leq 4) & =0.0573 \\ & >0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B2 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	Both, B2. Allow π, \% One error, B1, except x or \bar{x} or r or R : 0 $\mathrm{B}(12,0.6)$ stated or implied, e.g. $\mathrm{N}(7.2,2.88)$ Not $\mathrm{P}(<4)$ or $\mathrm{P}(\geq 4)$ or $\mathrm{P}(=4)$ Must be using $\mathrm{P}(\leq 4)$, or $\mathrm{P}(>4)<0.95$ and binomial
	$\begin{array}{ll} \beta: & \mathrm{CR} \text { is } \leq 3 \text { and } 4>3 \\ & p=0.0153 \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Must be using CR; explicit comparison needed
	Do not reject H_{0}. Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \hline & \\ \hline \end{array}$	Correct conclusion, needs $\mathrm{B}(12,0.6)$ and ≤ 4 Contextualised, some indication of uncertainty [SR: $\mathrm{N}(7.2, \ldots)$ or Po(7.2): poss B2 M1A0] [SR: $\mathrm{P}(<4)$ or $\mathrm{P}(=4)$ or $\mathrm{P}(\geq 4)$: B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	One valid relevant reason A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	$\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α : Members of population equally likely to be chosen β : Chosen independently/randomly γ : Large sample (e.g. > 30)	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$	One reason. NB : If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

5 (i)	Bricks scattered at constant average rate \& independently of one another	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	B1 for each of 2 different reasons, in context. (Treat "randomly" \equiv "singly" \equiv "independently")
(ii)	$\begin{gathered} \mathrm{Po}(12) \\ \mathrm{P}(\leq 14)-\mathrm{P}(\leq 7)[=.7720-.0895] \\ {[\text { or } \mathrm{P}(8)+\mathrm{P}(9)+\ldots+\mathrm{P}(14)]} \\ =\mathbf{0 . 6 8 2 5} \end{gathered}$	B1 M1 A1 3	Po(12) stated or implied Allow one out at either end or both, eg 0.617 , or wrong column, but not from Po(3) nor, eg, . 9105 .7720 Answer in range [0.682, 0.683]
(iii)	$\begin{aligned} & e^{-\lambda}=0.4 \\ & \lambda=-\ln (0.4) \\ & =0.9163 \\ & \text { Volume }=0.9163 \div 3=\mathbf{0 . 3 0 5} \end{aligned}$	B1 M1 A1 M1 	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T \& I λ art 0.916 or 0.92 , can be implied Divide their λ value by 3 [SR: Tables, eg $0.9 \div 3$: B1 M0 A0 M1]
6 (i)	$\begin{aligned} & 33.6 \\ & \frac{115782.84}{100}-33.6^{2}[=28.8684] \\ & \times \frac{100}{99} \quad=\mathbf{2 9 . 1 6} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^{2}}{99}\left[-336^{2}\right]$ SR B1 variance in range [29.1, 29.2]
(ii)	$\begin{aligned} & \begin{aligned} & \overline{\bar{R}} \sim \mathrm{~N}(33.6,29.16 / 9) \\ &=\mathrm{N}\left(33.6,1.8^{2}\right) \\ & 1-\Phi\left(\frac{32-33.6}{\sqrt{3.24}}\right) {[=\Phi(0.8889)] } \\ & \\ &=\mathbf{0 . 8 1 3 0} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Normal, their μ, stated or implied Variance [their (i)] $\div 9 \quad[$ not $\div 100$] Standardise \& use $\Phi, 9$ used, answer >0.5, allow $\sqrt{ }$ errors, allow cc 0.05 but not 0.5 Answer, art 0.813
(iii)	No, distribution of R is normal so that of \bar{R} is normal	B2 2	Must be saying this. Eg " 9 is not large enough": B0. Both: B1 max, unless saying that n is irrelevant.
7 (i)	$\begin{aligned} & \frac{2}{9} \int_{0}^{3} x^{3}(3-x) d x=\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3}[=2.7]- \\ & (11 / 2)^{2} \quad=\frac{9}{20} \text { or } \mathbf{0 . 4 5} \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \\ \hline \end{array}$	Integrate $x^{2} \mathrm{f}(x)$ from 0 to 3 [not for μ] Correct indefinite integral Mean is $1 \frac{1}{2}$, soi [not recoverable later] Subtract their μ^{2} Answer art 0.450
(ii)	$\begin{aligned} \frac{2}{9} \int_{0}^{0.5} x(3-x) d x & =\frac{2}{9}\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{0.5} \\ & =\frac{2}{27} \mathrm{AG} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Integrate $\mathrm{f}(x)$ between $0,0.5$, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = 1/3)
(iii)	$\begin{aligned} & \mathrm{B}\left(108, \frac{2}{27}\right) \\ & \approx \mathrm{N}(8,7.4074) \\ & 1-\Phi\left(\frac{9.5-8}{\sqrt{7.4074}}\right) \\ & =1-\Phi(0.5511)) \\ & =\mathbf{0 . 2 9 1} \end{aligned}$	B1 M1 A1 M1 A1 A1 6	$\mathrm{B}\left(108, \frac{2}{27}\right.$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{ }$ errors, wrong or no cc, needs to be using $\mathrm{B}(108, \ldots)$ Correct $\sqrt{ }$ and cc Final answer, art 0.291

(iv)	$\bar{X} \sim N\left(1.5, \frac{1}{240}\right)$	B1 B1 $\sqrt{ }$ B1 $\sqrt{ } 3$	Normal \quad NB: not part (iii) Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8 (i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=78.0 \\ & \mathrm{H}_{1}: \mu \neq 78.0 \\ & z=\frac{76.4-78.0}{\sqrt{68.9 / 120}}=-2.1115 \\ & >-2.576 \text { or } 0.0173>0.005 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Both correct, B2. One error, B1, but x or \bar{x} : B0. Needs $\pm(76.4-78) / \sqrt{ }(\sigma \div 120)$, allow $\sqrt{ }$ errors art -2.11 , or $p=0.0173 \pm 0.0002$ Compare z with (-)2.576, or p with 0.005
	$\begin{aligned} & 78 \pm z \sqrt{(68.9 / 120)} \\ &=76.048 \\ & 76.4>76.048 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } 1 . \end{aligned}$	Needs 78 and 120, can be - only Correct CV to 3 sf , $\sqrt{ }$ on z $z=2.576$ and compare 76.4, allow from $78 \leftrightarrow$ 76.4
	Do not reject H_{0}. Insufficient evidence that the mean time has changed	M1 $\mathrm{A} 1 \sqrt{ } 7$	Correct comparison \& conclusion, needs 120 , "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
(ii)	$\begin{aligned} & \frac{1}{\sqrt{68.9 / n}}>2.576 \\ & V_{n}>21.38 \\ & n_{\min }=458 \\ & \text { Variance is estimated } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with n and 2.576 , allow $\sqrt{ }$ errors, cc etc but not 2.326 Correct method to solve for $\sqrt{ } n($ not from n) 458 only (not 457), or 373 from 2.326, signs correct Equivalent statement, allow "should use t ". In principle nothing superfluous, but "variance stays same" B1 bod

