4734 Probability & Statistics 3

Penalise 2 sf instead of 3 once only. Penalise final answer ≥ 6 sf once only.

$\begin{bmatrix} 1 & (i) \\ \int_{0}^{1} \frac{2}{5} x^{2} dx + \int_{1}^{4} \frac{2}{5} \sqrt{x} dx \\ = \left[\frac{2x^{3}}{15}\right]_{0}^{1} + \left[\frac{4x^{3/2}}{15}\right]_{1}^{4} = 2 \\ A1 \\ A1 \\ A1 \end{bmatrix}$ $\begin{bmatrix} M1 \\ Attempt to integrate xf(x), both parts a limits \\ Correct indefinite integrals \\ Correct answer \\ Correct answer \end{bmatrix}$	added,
A1 3 Correct answer	
A1 3 Correct answer	
(ii) $\int_{2}^{4} \frac{2}{5\sqrt{x}} dx = \left[\frac{4\sqrt{x}}{5}\right]_{2}^{4} = \frac{4}{5}(2-\sqrt{2}) \text{ or } 0.4686$ M1 Attempt correct integral, limits; needs if $\mu < 1$	"1 –"
$\int_{2} \frac{z}{5\sqrt{x}} dx = \left[\frac{4\sqrt{x}}{5}\right]_{2}^{2} = -(2-\sqrt{2}) \text{ or } 0.4686$ A1 if $\mu < 1$ Correct indefinite integral, $$ on their	и
A1 3 Exact aef, or in range [0.468, 0.469]	
2 (i) Po(0.5), Po(0.75) M1 0.5, 0.75 scaled	
Po(0.7) and Po(0.9)A1These $A + B \sim Po(1.6)$ M1Sum of Poissons used, can have wrom	σ
parameters	Б
$P(A + B \ge 5) = 0.0237$ A1 0.0237 from tables or calculator $B(20, 0.0237)$ M1 Binomial (20, their p), soi	
B(20, 0.0237) M1 Binomial (20, their p), soi 0.9763 ²⁰ + 20×0.9763 ¹⁹ ×0.0237 A1 $$ Correct expression, their p	
= 0.9195 A1 7 Answer in range [0.919, 0.92]	
(ii) Bacteria should be independent in drugs; B1 1 Any valid relevant comment, must be	
or sample should be random contextualised	
3 (i) Sample mean = 6.486 $s^2 = 0.00073$ B1 0.000584 if divided by 5	
	1.96, s^2
$6.486 \pm 2.776 \times \sqrt{5}$ etc	,
(6.45, 6.52) B1 $t = 2.776$ seen A1A1 6 Each answer, cwo (6.45246, 6.5	195)
(ii) $2\pi \times \text{above}$ [= (40.5, 41.0)] M1 1	
4 (i) $H_0: p_1 = p_2; H_1: p_1 \neq p_2$, where p_i is the proportion of all solvers of puzzle <i>i</i> B1 Both hypotheses correctly stated, allo	w eg \hat{p}
Common proportion 39/80 M1A1 [= 0.4875]	
$\begin{vmatrix} s^2 = 0.4875 \times 0.5125 / 20 \\ 0.6 - 0.375 \end{vmatrix} \qquad $	
$ (\pm) \frac{0.6 - 0.375}{0.1117} = (\pm)2.013 $ MI $(0.6 - 0.375)/s$ Allow 2.066 $$ from unpooled variance	e, <i>p</i> =
0.0195	
2.013 > 1.96, or $0.022 < 0.025$ Reject H ₀ . Significant evidence that there M1 Correct method and comparison with 0.025, allow unpooled, 1.645 from 1-	
Reject H_0 . Significant evidence that there is a difference in standard of difficulty0.025, allow unpooled, 1.645 from 1- only	alleu
$A1\sqrt{8}$ Conclusion, contextualised, not too as	sertive
(ii) One-tail test used M1 One-tailed test stated or implied by	
Smallest significance level 2.2(1)%A12 Φ ("2.013"), OK if off-scale; allow 0.0)22(1)

5 (i	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	B1 B1 B1 3	Context & 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73 49.06 52.57 16.24 62.18 66.07]
(i) $H_0: \mu_M = \mu_W; H_1: \mu_M \neq \mu_W$ $3992 - \frac{221^2}{15} + 5538 - \frac{276^2}{17} [\approx 1793]$	B1 M1 A1	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30
	$1793/(14+16) = 59.766$ $(\pm)\frac{221/15 - 276/17}{\sqrt{59.766(\frac{1}{15} + \frac{1}{17})}} = (-)0.548$	A1 M1 A1√	Variance estimate in range [59.7, 59.8] (or $\sqrt{=7.73}$) Standardise, allow wrong (but not missing) 1/n Correct formula, allow $s^2(\frac{1}{15} + \frac{1}{17})$ or $(\frac{s_1^2}{15} + \frac{s_2^2}{17})$,
	Critical region: $ t \ge 2.042$ Do not reject H ₀ . Insufficient evidence of a difference in mean number of days	A1 B1 M1 A1√ 10	allow 14 & 16 in place of 15, 17; 0.548 or – 0.548 2.042 seen Correct method and comparison type, must be <i>t</i> , allow 1-tail; conclusion, in context, not too assertive
(i	i) Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

6 (i)	$F(0) = 0, F(\pi/2) = 1$	B1		Consider both end-points
	.,	Increasing	B1	2	Consider F between end-points, can be asserted
(ii	i)	$\sin^4(Q_1) = \frac{1}{4}$	M1		Can be implied Allow desired
		$\sin(Q_1) = 1/\sqrt{2}$	A1		Can be implied. Allow decimal approximations
		$Q_1 = \pi/4$	A1	3	Or 0.785(4)
(ii	ii)	$G(y) = P(Y \le y) = P(T \le \sin^{-1} y) $ = F(sin ⁻¹ y) = y ⁴ $g(y) = \begin{cases} 4y^3 & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$	M1		
		$=\mathbf{F}(\sin^{-1}y)$	A1		· ·
		$= y^4$	A1		Ignore other ranges
		$g(y) = \begin{cases} 4y^2 & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$	M1 A1	5	Differentiate $G(y)$
		(0 Otherwise	AI	5	Function and range stated, allow if range given in G
(i	v)	$\int_{0}^{1} \frac{4}{1+2y} \mathrm{d}y = \left[2\ln(1+2y)\right]_{0}^{1}$	M1		Attempt $\int \frac{g(y)}{y^3 + 2y^4} dy$; $\int_0^1 \frac{4}{1 + 2y} dy$
		J_{01+2y} J_{01+2y}	A1		$\int \int y^3 + 2y^4 dy y \int_0^3 \frac{1}{1+2y} dy$
		$= 2 \ln 3$	A1	3	Or 2.2, 2.197 or better
7 (i))	$\Phi\left(\frac{8.084 - 8.592}{0.7534}\right) = \Phi(-0.674) = 0.25$	M1		Standardise once, allow $\sqrt{\text{confusions, ignore}}$
α	,	$\Phi\left(\frac{-0.074}{0.7534}\right)^{-\Phi\left(-0.074\right)-0.25}$. 1		sign
		$\Phi(0) - \Phi(above) = 0.25$	A1 A1		Obtain 0.25 for one interval For a second interval, justified, eg using
		$\Psi(0) = \Psi(ab0ve) = 0.25$			$\Phi(0) = 0.5$
		$P(8.592 \le X \le 9.1) =$ same by symmetry	A1	4	For a third, justified, eg "by symmetry"
01		$\frac{x - 8.592}{0.7534} = 0.674$			[from probabilities to ranges]
β			M1A	A 1	A1 for art 0.674
		$x = 8.592 \pm 0.674 \times 0.7534$ = (8.084, 9.100)	A1A	.1	
(ii	i)	H_0 : normal distribution fits data All E values $50/4 = 12.5$	B1 P1		Not N(8.592, 0.7534). Allow "it's normally distributed"
			B1 M1		distributed"
		$X^{2} = \frac{4.5^{2} + 9.5^{2} + 1.5^{2} + 3.5^{2}}{12.5} = 10$	A1		[Yates: 8.56: A0]
		10 > 7.8794	B1		CV 7.8794 seen
		Reject H ₀ . Significant evidence that normal	M1		Correct method, incl. formula for χ^2 and comparison, allow wrong ν
		distribution is not a good fit.	A1√	7	Conclusion, in context, not too assertive
(i	v)	$8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{40}}$	M1		Allow $\sqrt{1}$ errors, wrong σ or <i>z</i> , allow 50
		$0.572 \pm 2.570 \times \frac{1}{\sqrt{49}}$	A1		Correct, including $z = 2.576$ or $t_{49} = 2.680$, <i>not</i> 50
		(8.315, 8.869)	A1	3	In range [8.31, 8.32] and in range (8.86, 8.87], even from 50, or (8.306, 8.878) from t_{49}
		(8.313, 8.809)	Al	3	8.87], even from 50, or (8.306, 8