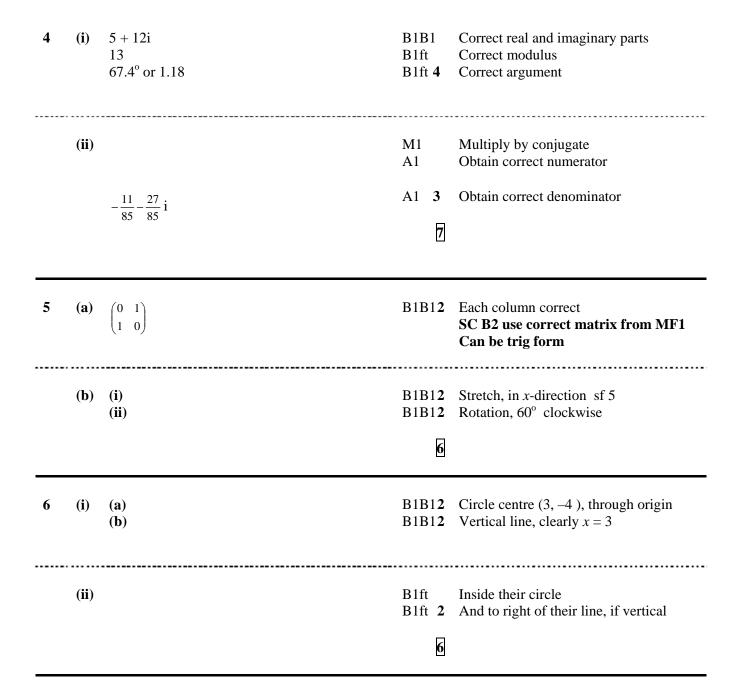
1			B1 M1 M1 A1	5	Establish result true for $n = 1$ or $n = 2$ Add next term to given sum formula Attempt to factorise or expand and simplify to correct expression Correct expression obtained Specific statement of induction conclusion
2	(i)	(-7)	M1 A1	2	Obtain a single value Obtain correct answer as a matrix
	(ii)	$\mathbf{BA} = \begin{pmatrix} 5 & -20 \\ 3 & -12 \end{pmatrix}$	M1		Obtain a 2 × 2 matrix
		(3 12)	A1		All elements correct
		$\begin{pmatrix} -7 & -20 \\ 11 & -20 \end{pmatrix}$	B1		4C seen or implied by correct answer
			B1f	t 4	Obtain correct answer, ft for a slip in BA
				6	
3		Either	M1 M1	6	Express as a sum of 3 terms Use standard sum results
3		Either $\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$		6	
3		$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$	M1	6	Use standard sum results Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i> and a
3		$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ $\frac{1}{3}n(2n-1)(2n+1)$	M1 A1 M1	6	Use standard sum results Correct unsimplified answer Attempt to factorise
3		$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ $\frac{1}{3}n(2n-1)(2n+1)$ <i>Or</i>	M1 A1 M1 A1		Use standard sum results Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i> and a quadratic
3		$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$ $\frac{1}{3}n(2n-1)(2n+1)$	M1 A1 M1 A1		Use standard sum results Correct unsimplified answer Attempt to factorise Obtain at least factor of <i>n</i> and a quadratic Obtain correct answer a.e.f.

6

A1 M1

A1


A1

 $\frac{1}{3}n(2n-1)(2n+1)$

Correct unsimplified answer Attempt to factorise

Obtain at least factor of *n*

Obtain correct answer

7 Either B1B1 State or use correct results $\alpha + \beta = -2k$ $\alpha\beta = k$ M1Attempt to find sum of new roots Obtain 4k **A**1 Attempt to find product of new roots M1**A**1 Obtain 4k B1ft 7 Correct quadratic equation a.e.f. $y^2 - 4ky + 4k = 0$ $\alpha + \beta = -2k$ $\frac{-2k}{\alpha}$ **B**1 State or use correct result B1 State or imply form of new roots B1 State correct substitution $y = \frac{-2k}{r}$ M1 Rearrange and substitute for xCorrect unsimplified equation **A**1 M1Attempt to clear fractions $y^2 - 4ky + 4k = 0$ **A**1 Correct quadratic equation a.e.f. OrFind roots of original equation B1 $-\,k\pm\sqrt{k^2-k}$ $\frac{\alpha+\beta}{\alpha} = \frac{2k}{k+\sqrt{k^2-k}}, \frac{\alpha+\beta}{\beta} = \frac{2k}{k-\sqrt{k^2-k}}$ **B**1 Express both new roots in terms of kM1Attempt to find sum of new roots

 $y^2 - 4ky + 4k = 0$

A1

M1

A1 B1ft Obtain 4*k*

Obtain 4k

Attempt to find product of new roots

Correct quadratic equation a.e.f.

8	(i)		M1 A1	2	Attempt to rationalise denominator or cross multiply Obtain given answer correctly
	(ii)	$\frac{1}{2}(\sqrt{n+2} + \sqrt{n+1} - \sqrt{2} - 1)$	M1 M1 A1 A1 M1	6	Express terms as differences using (i) Attempt this for at least 1^{st} three terms 1^{st} three terms all correct Last two terms all correct Show pairs cancelling Obtain correct answer, in terms of n
	(iii)		В1	1 9	Sensible statement for divergence
9	(i)	$\det \mathbf{A} = a^2 - a$	M1 M1 A1	3	Show correct expansion process for 3 x 3 Correct evaluation of any 2 x 2 Obtain correct answer
	(ii)	(a) (b) (c)	M1 A1 M1 A1 B1	6	Find a pair of inconsistent equations State inconsistent or no solutions Find a repeated equation State non unique solutions State that det A is non-zero or find correct solution State unique solution SC if detA incorrect, can score 2 marks for correct deduction of a unique
				9	- · · · · · · · · · · · · · · · · · · ·
10	(i)	$x^2 - y^2 = 3 xy = 2$ $z = 2 + i$	M1 A1 M1 M1 A1	5	Attempt to equate real and imaginary parts Obtain both results Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x or y value Obtain correct answer as a complex no.
	(ii)		В1	1	Obtain given answer correctly
	(iii)	$w^3 = 2 \pm 11i$ $w = 2 - i$	M1 A1 M1 M1	5	Attempt to solve quadratic equation Obtain correct answers Choose negative sign Relate required value to conjugate of (i) Obtain correct answer
			<u>.</u>	11	