A1 AEEF

- 1 Derive/quote $g'(x) = p/(1+x^2)$ Attempt f'(x) as $a/(1+bx^2)$ Use $x = \frac{1}{2}$ to set up a solvable equation in p, leading to at least one solution Get $p = \frac{5}{4}$ only
- Reasonable attempt at e^{2x} (1+2x+2x²) Multiply out their expressions to get all terms up to x^2 Get 1+3x+4x² Use binomial, equate coefficients to get 2 solvable equations in a and nReasonable attempt to eliminate a or nGet n=9, $a=\frac{1}{3}$ cwo
- 3 Quote/derive correct $dx=2dt/(1+t^2)$ Replace all x (not dx=dt) Get $2/(t-1)^2$ or equivalent Reasonable attempt to integrate their expression Use correct limits in their correct integral Clearly tidy to $\sqrt{3}+1$ from cwo
- **4 (i)** Get a = -2 Get b = 6 Get c = 1

(ii) \(\sqrt{6} \) \

- B1 M1 Allow any *a*, *b*=2 or 4 M1
- M1 3 terms of the form $1+2x+ax^2$, $a\neq 0$
- M1 (3 terms) x (minimum of 2 terms)
 A1 cao
 Reasonable attempt at binomial, each term
 M1 involving a and n (an=3, a²n(n-1)/2=4)
 M1
- A1 cao SC Reasonable f '(x) and f "(x) using product rule (2 terms) M1 Use their expressions to find f '(0) and f "(0) M1 Get $1+3x+4x^2$ cao A1
- B1 M1 From their expressions A1 M1 A1√ Must involve √3 A1 A.G.

B1 Correct shape in $-1 < x \le 3$ only (allow just top or bottom half)

- B1 May be quoted B1 May be quoted B1 May be quoted Grown correct working)
- B1 90 0 (at x=3) (must cross x-axis i.e. symmetry) B1 Asymptote at x=-1 only (allow -1 seen)
- B1 $\sqrt{\text{Correct crossing points}}$; $\pm\sqrt{(b/c)}$ from their b,c

5 (i) Reasonable attempt at parts Get $e^x(1-2x)^n$ - $\int e^x \cdot n(1-2x)^{n-1}$ -2 dx	M1 Leading to second integral A1 Or $(1-2x)^{n+1}/(-2(n+1))e^x$ $-\int (1-2x)^{n+1}/(-2(n+1))e^x dx$
Evidence of limits used in integrated part Tidy to A.G.	M1 Should show ± 1 A1 Allow $I_{n+1} = 2(n+1)I_n - 1$
(ii) Show any one of $I_3=6I_2-1$, $I_2=4I_1-1$, $I_1=2I_0-1$ Get $I_0(=e^{1/2}-1)$ or $I_1(=2e^{1/2}-3)$ Substitute their values back for their I_3 Get $48e^{1/2}-79$	B1 May be implied B1 M1 Not involving n A1
6 (i) Reasonable attempt to differentiate $\sinh y = x$ to get dy/dx in terms of y Replace $\sinh y$ to A.G.	M1 Allow $\pm \cosh y dy/dx = 1$ A1 Clearly use $\cosh^2 - \sinh^2 = 1$ SC Attempt to diff. $y = \ln(x + \sqrt{x^2 + 1})$ using chain rule M1 Clearly tidy to A.G. A1
(ii) Reasonable attempt at chain rule Get $dy/dx = a \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ Reasonable attempt at product/quotient Get d^2y/dx^2 correctly in some form Substitute in and clearly get A.G.	M1 To give a product A1 M1 Must involve sinh and cosh A1 $\sqrt{\text{From d}y/\text{d}x} = k \sinh(a\sinh^{-1}x)/\sqrt{(x^2+1)}$ A1 SC Write $\sqrt{(x^2+1)}\text{d}y/\text{d}x = k \sinh(a\sinh^{-1}x)$ or similar Derive the A.G.
7 (i) Get 5.242, 5.239, 5.237 Get 5.24	B1√ Any 3(minimum) correct from previous value B1 Allow one B1 for 5.24 seen if 2 d.p.used
(ii) Show reasonable staircase for any region Describe any one of the three cases Describe all three cases	
(iii) Reasonable attempt to use log/expo. rule Clearly get A.G.Attempt f'(x) and use at least once in correct N-R formulaGet answers that lead to 1.31	M1 A1 Minimum of 2 answers; allow truncation/rounding to at least 3 d.p.
(iv) Show f'(ln36) = 0 Explain why N-R would not work	B1 B1 Tangent parallel to <i>Ox</i> would not meet <i>Ox</i> again or divide by 0 gives an error

8 (i) Use correct definition of $\cosh x$ Attempt to cube their definition involving e^x and e^{-x} (or e^{2x} and e^x) Put their 4 terms into LHS and attempt to simplify Clearly get A.G.	B1
	M1 Must be 4 terms
	M1 A1 SC Allow one B1 for correct derivation from $\cosh 3x = \cosh(2x+x)$
(ii) Rewrite as $k \cosh 3x = 13$ Use ln equivalent on $13/k$	M1 M1 Allow $\pm \ln \operatorname{or} \ln(13/k \pm \sqrt{(13/k)^2 - 1})$ for their k or attempt to set up and solve quadratic via exponentials
Get $x = (\pm) \frac{1}{3} \ln 5$ Replace in cosh x for u Use $e^{a \ln b} = b^a$ at least once Get $\frac{1}{2}(5^{\frac{1}{3}} + 5^{-\frac{1}{3}})$	A1 M1 M1 A1
9 (i) Attempt integral as $k(2x+1)^{1.5}$ Get 9 Attempt subtraction of areas Get 3	M1 A1 cao M1 Their answer – triangle A1 $$ Their answer – 6 (>0)
(ii) Use $r^2 = x^2 + y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ Eliminate x and y to produce quadratic equation (=0) in r (or $\cos\theta$) Solve their quadratic to get r in terms of (or vice versa) Clearly get A.G. Clearly show $\theta_1(\text{at }B) = \tan^{-1}3/4$ and $\theta_2(\text{at }A) = \pi$	B1 M1 θ A1 $$ A1 $r>0$ may be assumed B1 SC Eliminate y to get r in terms of x only M1 Get $r = x + 1$ SC Start with $r=1/(1-\cos\theta)$ and derive cartesian
(iii) Use area = $\frac{1}{2} \int r^2 d\theta$ with correct r Rewrite as $k \operatorname{cosec}^4(\frac{1}{2}\theta)$ Equate to their part (i) and tidy Get 24	B1 cwo; ignore limits M1 Not just quoted M1 To get ∫ = some constant A1 A.G.