1			For triangle with two of its sides marked
		2/1	0.8 x 10.5 and 0.8 x 8.5 (or 10.5 and 8.5)
		M1	or for using $I = \Delta mv$ in one direction.
	For included angle marked α or for $0.8(10.5 - 8.5\cos\alpha) = 4\cos\beta$	A1	Allow B1 for omission of 0.8
	For opposite side marked $4/0.8$ (or 4) or for		
	$0.8x8.5sin\alpha = 4sin\beta$	A1	Allow B1 for omission of 0.8
		M1	For using the cosine rule or for eliminating ρ
	$8.4^2 + 6.8^2 - 2x8.4x6.8\cos\alpha = 4^2$	A1ft	p ft 0.8 mis-used or not used
	$\alpha = 28.1^{\circ}$	All Al	It 0.8 mis-used of not used
	u – 20.1	[6]	
2(i)	$[100a = 2aV_B]$	M1	For taking moments about A for AB
-(-)	Vertical component at B is 50 N	A1	
	Vertical component at C is 150 N	A1	
	1	[3]	
(ii)			For taking moments about B for BC (3
			terms needed) or about A for the whole (4
		M1	terms needed)
	$100(0.5a) + (\sqrt{3} a)F = 150a \text{ or}$		
	$100a + 100(1.5a) = 150a + (\sqrt{3} a)F$	A1ft	
	Frictional force is 57.7 N	A1	
	Direction is to the right	B1	
a (1)		[4]	
3(i)	u = 4 v = 2	B1 B1	
	$\mathbf{v} = \mathbf{Z}$		
		[2]	
(ii)			For using the principle of conservation of
		M1	momentum or for using NEL with $e = 1$
	mu = ma + mb (or $u = b - a$)	A1	
	u = b - a (or $mu = ma + mb$)	B1	
	$a = 0$ and $b = 4ms^{-1}$	A1ft	ft incorrect u
	Speed of A is 2ms ⁻¹ and direction at 90° to	A 1.64	ft in a sum at a
	the wall Speed of B is 4ms ⁻¹ and direction parallel to	A1ft	ft incorrect v
	the wall	A1ft	ft incorrect u
		[6]	it medirect u
		[0]	
4(i)			For using Newton's second law (1 st or 2 nd
	$[0.25 \text{ dv/dt} = 3/50 - t^2/2400]$	M1	stage)
	_		For attempting to integrate (1 st stage) and
			using $v(0) = 0$ (may be implied by the
		M1	absence of $+ C_1$)
	$v = 12t/50 - t^3/1800$	A1	
	[v(12) = 1.92]	M1	For evaluating v when force is zero
	$[0.25 \text{ dv/dt} = t^2/2400 - 3/50 \Rightarrow$		For using Newton's second law (2 nd stage)
	$v = t^3/1800 - 12t/50 + C_2$	M1	and integrating
	$[1.92 = 0.96 - 2.88 + C_2]$	M1	For using $v(12) = 1.92$
	$v = t^3/1800 - 12t/50 + 3.84$ $v(24) = 5.76 = 3 \times v(12)$	A1	AG
	$v(24) = 5.76 = 3 \times v(12)$	A1 [8]	AG

Mark Scheme

(ii)	Sketch has $v(0) = 0$ and slope decreasing		
(11)	Sketch has $V(0) = 0$ and slope decreasing (convex upwards) for $0 < t < 12$	B1	
	Sketch has slope increasing (concave	DI	
	upwards) for $12 < t < 24$	B1	
	Sketch has v(t) continuous, single valued		
	and increasing (except possibly at $t = 12$)		
	with v(24) seen to be > $2v(12)$	B1	
		[3]	
5(i)	For using amplitude as a coefficient of a		
	relevant trigonometric function.	B1	
	For using the value of ω as a coefficient of t		
	in a relevant trigonometric function.	B1	
	$x_1 = 3cost and x_2 = 4cos1.5t$	B1	
(;;)		[3]	For using distance travelled by P_2 for
(ii)		M1	$0 < t < 5\pi/3$ is $5A_2$
	Part distance is 20m	A1	$0 < t < 5h/5$ is $5H_2$
		111	For subtracting displacement of P_2 when
	[20 - (-3.62)]	M1	t = 5.99 from part distance.
	Distance travelled by P_2 is 23.6 m	A1	r · · · · · · · · · · · · · · · · · · ·
	, , , , , , , , , , , , , , , , , , ,	[4]	
(iii)		M1	For differentiating x_1 and x_2
	$\dot{x}_1 = -3 \text{sint}; \ \dot{x}_2 = -6 \sin 1.5 \text{t}$	A1	
	1 2		For evaluating when $t = 5.99$ (must use
		M1	radians)
	$v_1 = 0.867$, $v_2 = -2.55$; opposite directions	A1	
		[4]	
	Alternative for (iii):		Equation $r^2 = r^2(r^2 - r^2)$ (must use redices
		M1	For using $v^2 = n^2(a^2 - x^2)$ (must use radians to find values of x)
	$v_1^2 = 3^2 - 2.87^2$, $v_2^2 = 2.25[4^2 - (-3.62)^2]$	A1	to find values of x)
	$v_1 = 5 = 2.07$, $v_2 = 2.25[4 = (-5.02)]$ $[\pi < 5.99 < 2\pi \rightarrow v_1 > 0,$	111	For using the idea that v starts –ve and
	$4\pi/3 < 5.99 < 2\pi \rightarrow v_2 < 0$	M1	changes sign at intervals of $T/2$ s
	$v_1 = 0.867, v_2 = -2.55$; opposite directions	A1	
6(i)	PE loss at lowest allowable point = $25W$	B1	
	_		For using $EE = \lambda x^2/(2L)$; may be scored in
		M1	(i) or in (ii)
	EE gain = $32000x5^2/(2x20)$	A1	
			For equating PE loss and EE gain and
	[25W = 20000]	M1	attempting to solve for W
	Value of W is 800	A1	
(;;)	[800 = 32000x/20]	[5] M1	For using W = $\lambda x/L$ at max speed
(ii)	[000 - 32000x/20]	M1	For using $W = \lambda x/L$ at max speed For using the principle of conservation of
		M1	energy (3 terms required)
	$\frac{1}{2}(800/9.8)v^2$		chergy (o terms required)
	$= 800 \times 20.5 - 32000 \times 0.5^{2}/(2 \times 20)$	A1	
	Maximum speed is 19.9ms ⁻¹	A1	
		[4]	
(iii)			For applying Newton's second law to
		M1	jumper at lowest point (3 terms needed)
	$(800) \ddot{x}/g = 800 - 32000 \text{ x } 5/20$	A1	
	Max. deceleration is 88.2 ms^{-2}	A1	
		[3]	

7(i)			For using the principle of conservation of
~ ~ ~	$\left[\frac{1}{2} \text{ mv}^2 - \frac{1}{2} \text{ m 6}^2 = \text{mg}(0.7)\right]$	M1	energy for P (3 terms needed)
	Speed of P before collision is 7.05ms ⁻¹	A1	
	Coefficient of restitution is 0.695	B1ft	ft 4.9 \div speed of P before collision
		[3]	-
(ii)			For using the principle of conservation of
	$[\frac{1}{2} \text{ mv}^2 = \frac{1}{2} \text{ m } 4.9^2 - \text{mg} 0.7(1 - \cos \theta)]$	M1	energy for Q
	$v^2 = 3.43(3 + 4\cos\theta)$	A1	Accept any correct form
			For using Newton's second law radially
		M1	with $a_r = v^2/r$
	$T - mg\cos\theta = mv^2/0.7$	A1	
	$[T - m9.8\cos\theta = m3.43(3 + 4\cos\theta)/0.7]$	M1	For substituting for v^2
	Tension is 14.7m(1 + $2\cos\theta$)N	A1	AG
	$1 \text{ chsion is } 14.7 \text{ m}(1 + 20030^{\circ}) \text{ is }$	[6]	
(iii)	$T = 0 \Rightarrow \theta = 120^{\circ}$	B1	
			For using $a_r = -g\cos\theta$
			{or $3.43(3 + 4\cos\theta)/0.7$ }
		M1	or $a_t = -gsin \theta$
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ or		or $a_t = -g \sin \theta$
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	A1	
	Radial acceleration is $(\pm)4.9 \text{ ms}^{-1}$ and		
	transverse acceleration is $(\pm)8.49 \text{ ms}^{-1}$	B1	
		[4]	
			SR for candidates with a sin/cos mix in the
			work for M1 A1 B1 immediately above.
			(max. 1/3)
			Radial acceleration is $(\pm)8.49 \text{ ms}^{-1}$ and
			transverse acceleration is $(\pm)4.9 \text{ ms}^{-1}$ B1
(iv)	$[V^2 = 3.43\{3 + 4(-0.5)\}x0.5^2 \text{ or}$		
	$V^2 = (-g\cos 120^\circ \ge 0.7) \ge \cos^2 60^\circ]$	M1	For using $V = v(120^\circ) \times \cos 60^\circ$
	$V^2 = 0.8575$	A1	AG
	$[mgH = \frac{1}{2} m(4.9^2 - 0.8575) \text{ or}$		For using the principle of conservation of
	$mg(H - 1.05) = \frac{1}{2}m(3.43 - 1.05)$	M1	energy
	0.8575)]	A1	
	Greatest height is 1.18 m	[4]	