1 (i)(a)	$\begin{aligned} & \hline 1-\mathrm{P}(\leq 6)=1-0.8675 \\ &=\mathbf{0 . 1 3 2 5} \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	$\begin{aligned} & 1-.9361 \text { or } 1-.8786 \text { or } 1-.8558: \text { M1. .9721: M0 } \\ & \text { Or } 0.132 \text { or } 0.133 \end{aligned}$
(b)	$e^{-0.42} \frac{0.42^{2}}{2!}=\mathbf{0 . 0 5 7 9 5}$	$\begin{array}{lll} \mathrm{M} 1 & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	Po(0.42) stated or implied Correct formula, any numerical λ Answer, art 0.058 . Interpolation in tables: M1B2
(ii)	E.g. "Contagious so incidences do not occur independently", or "more cases in winter so not at constant average rate"	B2 2	Contextualised reason, referred to conditions: B2. No marks for mere learnt phrases or spurious reasons, e.g. not just "independently, singly and constant average rate". See notes.
2 (i)	$\begin{aligned} & \mathrm{B}(10,0.35) \\ & \mathrm{P}(<3) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\mathrm{B}(10,0.35)$ stated or implied Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term Answer 0.2616 or better or 0.262 only
(ii)	Binomial requires being chosen independently, which this is not, but unimportant as population is large	B2	Focus on "Without replacement" negating independence condition. It doesn't negate "constant probability" condition but can allow B1 if "selected". See notes
3 (i)	$\begin{aligned} & \left(\frac{32-40}{\sigma}\right)=\Phi^{-1}(0.2)=-0.842 \\ & \sigma=9.506] \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & 3 \end{array}$	$\begin{aligned} & \text { Standardise and equate to } \Phi^{-1} \text {, allow " } 1-\text { " errors, } \sigma^{2} \text {, cc } \\ & 0.842 \text { seen } \\ & \text { Answer, } 9.5 \text { or in range }[9.50,9.51] \text {, c.w.o. } \end{aligned}$
(ii)		B1 M1 A1 M1 A1 A1 $\mathbf{6}$	B($90,0.2$) stated or implied N , their $n p \ldots$... variance their $n p q$, allow $\sqrt{ }$ errors Standardise with $n p$ and $n p q$, allow $\sqrt{ }$, cc errors, e.g. .396, .448, .458, .486, .472; $\quad \sqrt{ } n p q$ and cc correct Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
$\begin{array}{ll}4 & \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: p=0.4, \\ & \mathrm{H}_{1}: p>0.4 \\ & R \sim \mathrm{~B}(16,0.4): \\ & \mathrm{P}(R \geq 11)=0.0191 \\ & \quad>0.01 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Fully correct, B2. Allow π. p omitted or μ used in both, or > wrong: B1 only. x or \bar{x} or 6.4 etc: B0 $B(16,0.4)$ stated or implied, allow $\mathrm{N}(6.4,3.84)$ Allow for $\mathrm{P}(\leq 10)=0.9808$, and <0.99, or $z=2.092$ or $p=0.018$, but not $\mathrm{P}(\leq 11)=0.9951$ or $\mathrm{P}(=11)=0.0143$ Explicit comp with .01 , or $z<2.326$, not from ≤ 11 or $=11$
(β)	$\mathrm{CR} R \geq 12$ and $11<12$ Probability 0.0049	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	Must be clear that it's ≥ 12 and not ≤ 11 Needs to be seen, allow 0.9951 here, or $p=.0047$ from N
	Do not reject H_{0}. Insufficient evidence that proportion of commuters who travel by train has increased	$\begin{array}{ll}\text { M1 } \\ \text { A1 FT } & 7\end{array}$	Needs like-with-like, $\mathrm{P}(R \geq 11)$ or $\mathrm{CR} R \geq 12$ Conclusion correct on their p or CR, contextualised, not too assertive, e.g. "evidence that" needed. Normal, $z=2.34$, "reject" [no cc] can get 6/7
5 (i)	(a) $\quad \begin{aligned} & 30+1.645 \times \frac{5}{\sqrt{10}} \\ & =32.6\end{aligned}$ Therefore critical region is $\bar{t}>32.6$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \\ \text { A1 FT } & 4 \\ \hline \end{array}$	$30+5 z / \sqrt{ } 10$, allow \pm but not just -, allow $\sqrt{ }$ errors $z=1.645$ seen, allow Critical value, art 32.6 " $>c$ " or " $\geq c$ ", FT on c provided >30, can't be recovered. Withhold if not clear which is CR
	(b) $\begin{aligned} & \mathrm{P}(\bar{t}<32.6 \mid \mu=35) \\ & \frac{32.6-35}{5 / \sqrt{10}}[=-1.5178] \\ & \mathbf{0 . 0 6 4 5}\end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { dep*M1 } \\ & \text { A1 }{ }_{3} \end{aligned}$	Need their c, final answer <0.5 and $\mu=35$ at least, but allow answer >0.5 if consistent with their (i) Standardise their CV with 35 and $\sqrt{ } 10$ or 10 Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
(ii)	$\begin{aligned} & (32.6-\mu)=0 \\ & \mu=32.6 \\ & 20+0.6 m=32.6 \\ & m=\mathbf{2 1} \end{aligned}$		Standardise c with μ, equate to Φ^{-1}, can be implied by: $\mu=$ their c Equate and solve for m, allow from 30 or 35 Answer, a.r.t. 21, c.a.o. MR: 0.05: M1 A0 M1, 16.7 A1 FT Ignore variance throughout (ii)

6 (a)	$\begin{aligned} & \mathrm{N}(24,24) \\ & 1-\Phi\left(\frac{30.5-24}{\sqrt{24}}\right)=1-\Phi(1.327) \\ &=\mathbf{0 . 0 9 2 3} \end{aligned}$	B1 B1 M1 A1 A1 5	Normal, mean 24 stated or implied Variance or SD equal to mean Standardise 30 with λ and $\sqrt{ } \lambda$, allow cc or $\sqrt{ }$ errors, e.g. .131 or $.1103 ; 30.5$ and $\sqrt{ } \lambda$ correct Answer in range [0.092, 0.0925]
(b)(i)	p or $n p$ [$=196]$ is too large	B1	Correct reason, no wrong reason, don't worry about 5 or 15
(ii)	$\begin{aligned} & \text { Consider }(200-E) \\ & (200-E) \sim \operatorname{Po}(4) \\ & \mathrm{P}(\geq 6) \quad[=1-0.7851] \\ & \quad=\mathbf{0 . 2 1 4 9} \end{aligned}$	M1 M1 M1 A1 4	Consider complement $\operatorname{Po}(200 \times 0.02)$ Poisson tables used, correct tail, e.g. 0.3712 or 0.1107 Answer a.r.t. 0.215 only
$\begin{array}{rr}7 & \\ \\ & \\ & (\alpha)\end{array}$	$\begin{aligned} & \mathrm{H}_{0}: \mu=56.8 \\ & \mathrm{H}_{1}: \mu \neq 56.8 \\ & \bar{x}=17085 / 300=56.95 \\ & \frac{300}{299}\left(\frac{973847}{300}-56.95^{2}\right) \\ & \quad=2.8637 \ldots \\ & z=\frac{56.95-56.8}{\sqrt{2.8637 / 300}}=1.535 \\ & 1.535<1.645 \text { or } 0.0624>0.05 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Both correct One error: B1, but not \bar{X}, etc 56.95 or 57.0 seen or implied Biased [2.8541] : M1M0A0 Unbiased estimate method, allow if $\div 299$ seen anywhere Estimate, a.r.t. 2.86 [not 2.85] Standardise with $\sqrt{ } 300$, allow $\sqrt{ }$ errors, cc $z \in[1.53,1.54]$ or $p \in$ [0.062, 0.063], not -1.535 Compare explicitly z with 1.645 or p with 0.05 , or $2 p>0.1$, not from $\mu=56.95$
(β)	$\begin{aligned} & \mathrm{CV}_{56.8 \pm 1.645 \times \sqrt{\frac{2.8637}{300}}}^{56.96>56.95} \end{aligned}$	M1 A1 A1 FT	$\begin{aligned} & 56.8+z \sigma / \sqrt{300} \text {, needn't have } \pm \text {, allow } \sqrt{ } \text { errors } \\ & z=1.645 \\ & c=56.96, \quad \text { FT on } z \text {, and compare } 56.95 \quad\left[c_{L}=56.64\right] \end{aligned}$
	Do not reject H_{0}; insufficient evidence that mean thickness is wrong	M1 A1 FT 11	Consistent first conclusion, needs 300, correct method and comparison Conclusion stated in context, not too assertive, e.g. "evidence that" needed
8 (i)	$\int_{1}^{\infty} k x^{-a} \mathrm{~d} x=\left[k \frac{x^{-a+1}}{-a+1}\right]_{1}^{\infty}$ Correctly obtain $k=a-1$ AG	M1 B1 A1 3	Integrate $\mathrm{f}(x)$, limits 1 and ∞ (at some stage) Correct indefinite integral Correctly obtain given answer, don't need to see treatment of ∞ but mustn't be wrong. Not k^{-a+1}
(ii)	$\begin{aligned} & \int_{1}^{\infty} 3 x^{-3} \mathrm{~d} x=\left[3 \frac{x^{-2}}{-2}\right]_{1}^{\infty}=11 / 2 \\ & \int_{1}^{\infty} 3 x^{-2} \mathrm{~d} x=\left[3 \frac{x^{-1}}{-1}\right]_{1}^{\infty}-(11 / 2)^{2} \end{aligned}$ Answer 3/4	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	Integrate $x \mathrm{f}(x)$, limits 1 and ∞ (at some stage) [x^{4} is not MR] Integrate $x^{2} \mathrm{f}(x)$, correct limits Either $\mu=1 \frac{1}{2}$ or $\mathrm{E}\left(X^{2}\right)=3$ stated or implied, allow $k, k / 2$ Subtract their numerical μ^{2}, allow letter if subs later Final answer $3 / 4$ or 0.75 only, cwo, e.g. not from $\mu=-1 \frac{1}{2}$. [SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
(iii)	$\begin{aligned} & \int_{1}^{2}(a-1) x^{-a} \mathrm{~d} x=\left[-x^{-a+1}\right]_{1}^{2}=0.9 \\ & 1-\frac{1}{2^{a-1}}=0.9, \quad 2^{a-1}=10 \\ & a=4.322 \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \\ & \text { dep*M1 } \\ & \text { M1 indept } \\ & \text { A1 } \quad 4 \end{aligned}$	Equate $\int \mathrm{f}(x) \mathrm{d} x$, one limit 2, to 0.9 or 0.1 . [Normal: 0 ex 4] Solve equation of this form to get $2^{a-1}=$ number Use logs or equivalent to solve $2^{a-1}=$ number Answer, a.r.t. 4.32. T\&I: (M1M1) B2 or B0

Specimen Verbal Answers

$1 \quad \alpha \quad$ "Cases of infection must occur randomly, independently, singly and at constant average rate"
B0
$\beta \quad$ Above + "but it is contagious" B1
$\gamma \quad$ Above + "but not independent as it is contagious" B2
$\delta \quad$ "Not independent as it is contagious" B2
$\varepsilon \quad$ "Not constant average rate", or "not independent" B0
λ "Not constant average rate because contagious" [needs more] B1
$\zeta \quad$ "Not constant average rate because more likely at certain times of year" B2
$\mu \quad$ Probabilities changes because of different susceptibilities B0
$v \quad$ Not constant average rate because of different susceptibilities B2
$\eta \quad$ Correct but with unjustified or wrong extra assertion [scattergun] B1
θ More than one correct assertion, all justified B2
$\pi \quad$ Valid reason (e.g. "contagious") but not referred to conditions B1
[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".
α "No it doesn't invalidate the calculation" [no reason] B0
β "Binomial requires not chosen twice" [false] B0
γ "Probability has to be constant but here the probabilities change" B0
$\delta \quad$ Same but "probability of being chosen" [false, but allow B1] B1
$\varepsilon \quad$ "Needs to be independently chosen but probabilities change" [confusion] B0
$\zeta \quad$ "Needs to be independent but one choice affects another" [correct] B2
η "The sample is large so it makes little difference" [false] BO
$\theta \quad$ "The population is large so it makes little difference" [true] B2
$\lambda \quad$ Both correct and wrong reasons (scattergun approach) B1
[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.
Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition does require the possibility of the same person being chosen twice.]

Some explanation seems necessary. The following are widespread but mistaken beliefs:

1) Choosing a random sample by means of random numbers does not permit the same person to be chosen twice.
2) Sampling without replacement causes p to change from one trial to another.

Both of these are FALSE! Why?

1) Random sampling using random numbers demands that each member of the sample is chosen independently of every other member of the sample. If it is known that a certain person is in the sample and that that person cannot be chosen again, this fact changes the probability that another person is chosen next time. The same sequence of random digits can come up again. Just because, say, 123 has already occurred doesn't alter the fact that 123 is just as likely as any other 3-digit sequence to come up on any other go, and the same person can be chosen twice.
2) Attention has been drawn before to the confusion that exists for many candidates between "trials are independent" and "each trial has the same probability of success", caused by too much emphasis on the misleading example of drawing counters out of a bag. Consider the present case. The probability that, say, the third student picked is a science student is 0.35 , as it is for the first, second, ..., tenth. This is a familiar fact from S1 and can easily be demonstrated using a tree diagram, assuming an appropriate total
population size (say 100). It is not the absolute ("prior") probabilities that change but the conditional probabilities, which are irrelevant.
In fact the binomial distribution applies only to sampling with replacement. Strictly, the proper method of calculating probabilities when sampling without replacement is the method using ${ }^{n} C_{r}$ from S1. Again suppose the population is of size 100, of whom 35 are studying science subjects. Consider the probability that a sample of 10 students consists of exactly two who are studying science subjects.

- Case 1 (with replacement. Binomial): ${ }^{10} C_{2} 0.35^{2} 0.65^{8}=0.1757$.
- Case 2 (without replacement. ${ }^{n} C_{r}$): ${ }^{35} C_{2} \times{ }^{65} C_{8} /{ }^{100} C_{10}=0.1735$.

The difference is small, though not non-existent. The bigger the population, the smaller the difference; for a population of size 1000 the second probability is 0.1755 . In real life, repeats are usually not allowed, but use of the binomial distribution remains appropriate provided the population is large enough. (There is a technical name for the ${ }^{n} C_{r}$ method; it is called the hypergeometric distribution.)

