

GCE

Mathematics

Unit 4730: Mechanics 3

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Answer			Marks	Guidance	
1	(i)	impulse momentum diagram	M1 A1	right-angled triangle with angle α and sides labelled 3, v and $I/0.2$ or 0.6, 0.2 v and I	correct orientation, α and one side labelled correctly, right angle implied first two marks may be implied by correct working
		$\tan \alpha = I/(0.2x3)$ $I = 0.25 \text{ shown}$	M1 A1 [4]	AG	contest working
		OR $0.2 \times 3 = 0.2v \cos \alpha$ and $I = 0.2v \sin \alpha$ $\frac{I}{0.2 \times 3} = \tan \alpha$ $I = 0.25$	M1 A1 M1	resolve parallel or perp to dir of motion both attempt to manipulate AG	
	(ii)	$\cos \alpha = 3/v$ (speed) = 3.25 m s ⁻¹	M1 A1 [2]	or using Pythagoras, with 3 and 1.25 oe	
2	m	Moments about <i>B</i> for <i>BC</i> $75L\cos\beta = 50x2L\sin\beta$ $\tan\beta = 3/4$	M1 A1 A1 [3]	2 terms involving $\sin \beta$ and $\cos \beta$, 75 and 50 WWW AG	allow sin/cos error/ sign error allow missing L
	(ii)	moments about A for both rods $WL\cos\alpha + 75(2L\cos\alpha + L\cos\beta) = 50(2L\sin\alpha + 2L\sin\beta)$	M1*	all (5) terms present; each term involves sin/cos α/β. Dim correct: no extra terms	allow \sin/\cos , $L/2L$, sign errors L may be cancelled
		correct values for $\sin/\cos \alpha/\beta$ attempt to solve $(W=)$ 90 (N)	B1 *M1 A1 [5]	dep M1A1 dep B1 also	all 4 seen all values substituted
		'X' = 50 N to right on AB oe $'Y' = 75 N down on AB oe$ Moments about $A for AB$	B1 B1 M1	sc B1 for magnitudes if directions wrong/missing involves W , 75, 50, sin α and cos α . dimensionally correct; no extra terms	50 & 75 may be seen on diagram in (i)
		$WL\cos\alpha + 75 \times 2L\cos\alpha = 50 \times 2L\sin\alpha$ $(W=) 90 (N)$	A1 A1	with substitution for α	L may be cancelled

Answer			Marks	Guidance	
3	(i)	use of $T = \frac{\lambda x}{1}$	M1	used at least once	
		use of $T = \frac{\lambda x}{l}$ $T = \frac{10 \times 0.2}{0.4} + \frac{12 \times 0.1}{0.5}$	A1		
		W = 7.4 N	A1	CAO AG	
		use of $E = \frac{\lambda x^2}{2l}$	M1	used at least once	
		use of $E = \frac{\lambda x^2}{2l}$ $E = \frac{10(0.2)^2}{2 \times 0.4} + \frac{12(0.1)^2}{2 \times 0.5}$	A1		may see $0.5 + 0.12$
		$E = 0.62 \text{ (J)}$ 2×0.5 $E = 0.62 \text{ (J)}$	A1 [6]		
	(ii)	use of $F = ma$ when further extension is x $7.4 - \frac{10 \times (x + 0.2)}{0.4} - \frac{12 \times (x + 0.1)}{0.5} = \frac{7.4}{g}a$	M1* A1	allow sign errors, 'm' wrong 'F' correct	OR, when total length of string is x $7.4 - \frac{10 \times (x - 0.4)}{0.4} - \frac{12 \times (x - 0.5)}{0.5} = \frac{7.4}{g} a$
		$a = -\frac{49g}{7.4}x$ SHM: $\omega^2 = \frac{49g}{7.4}$ (or $\frac{2401}{37}$ or 64.89189)	A1	accept $a = -64.89x$, $a = -\frac{2401}{37}x$ oe	$a = -\frac{49g}{74}(x - 0.6)$
		SHM: $\omega^2 = \frac{49g}{7.4}$ (or $\frac{2401}{27}$ or 64.89189)	A1	dep on all first 3 marks	SHM about $x = 0.6$, and ω^2 given
		Use of $T = \frac{2\pi}{\omega}$	*M1	must subst for their ω	
		period is 0.780 (secs) $\frac{2\pi\sqrt{37}}{49}$	A1	allow if ω correct	0.77998
		all subsequent motion is SHM because string			
		does not become slack	B1 [7]	justified at some point	
4	(i)	$-\frac{v}{8} = 0.4 \frac{dv}{dt}$	M1*	allow sign error, allow 0.4a	
		$t = -3.2 \int \frac{1}{v} dv$	A1 *M1	attempt to separate variables and integrate	or $t = -3.2 \int_{10}^{5} \frac{1}{v} dv$
		$t = -3.2 \ln v + 3.2 \ln 10$ time taken = 3.2ln2 or 2.22 (s)	A1 A1 [5]		$t = -3.2 \ln v$; limits used correctly 2.21807

Answer		Marks	Guidance		
	(ii)	$-\frac{v}{8} = 0.4v \frac{dv}{dx}$	M1* A1 *M1	allow sign error attempt to separate variables and integrate	
		$x = -3.2 \int dv$ $x = -3.2 \text{ v} + 32$ ave speed = $x/(i)$ ave speed = 7.21	A1 *M1 A1 [6]	x = 16 when v = 5.	their x evaluated accept 5/ln2
		OR $\frac{dx}{dt} = 10e^{-\frac{t}{3.2}}$ $x = 10 \int e^{-\frac{t}{3.2}} dt$	M1* A1 *M1	for M1, ft from (i), must contain ln term attempt to separate variables and integrate	
		$x = 32\left(1 - e^{-\frac{t}{3.2}}\right)$ ave speed = $x/(i)$	A1 *M1	must show constant or use limits correctly	$x = 16$ when $t = 3.2 \ln(2)$
		ave speed = 7.21	A1	dep all 5 previous marks	accept 5/ln2
5	(i)	use of conservation of momentum $2ma\cos\alpha - mb\cos\beta = mx2x\cos45^{\circ}$ use of NEL	M1* A1 M1*	must be 3 non-zero terms must be 3 non-zero terms, and 'e' in correct postion	allow sign errors, $m/2m$ errors, \sin/\cos allow sign errors, \sin/\cos ,
		$2\cos 45^{\circ} - 0 = -2/3 (-b\cos\beta - a\cos\alpha)$ attempt to eliminate $a\cos\alpha$ or $b\cos\beta$ $a\cos\alpha = 5\sqrt{2}/6$ $b\cos\beta = 2\sqrt{2}/3$ oe	A1 *M1 A1 A1 [7]	dep both previous M1 marks AG dep final M1 and www	
	(ii)	$a\sin\alpha = 2$ attempt to solve $a\sin\alpha = 2$ and $a\cos\alpha = 5\sqrt{2}/6$ a = 2.32 $\alpha = 59.5^{\circ}$	B1 M1 A1 A1 [4]	need to eliminate a or α accept 1.03 radians	2.321398, 59.49104°, 1.0383rad

	ight of $\frac{\pi}{0.25\pi}$ or $\frac{2\pi}{0.5\pi}$ wrong a and/or ω
defined differently in (ii) $x = 0.6\cos 4x 0.7$ $x = -0.565$ $v = -0.6x 4x \sin 4x 0.7$ M1 use of (or $a\sin(\omega t + \varepsilon)$, with $\varepsilon = \pm \pi/2$ -0.565333 or $(-)a\omega\cos(\omega t + \varepsilon)$, with $\varepsilon = \pm \pi/2$; allow M1ft from wrong formula for x mula used, direction of v needs to be ear.
t and x for second point correctly giving precisely 2 other occasions, with x and t values matching	of t are = 0.0854, 0.871 of x are 0.565, -0.565 it 3 marks $\frac{\pi/4 - 0.7}{2 - 0.7}$ ignore ref to point when $t = 0.7$ can show on diagram $\frac{\pi}{4 - 0.7}$ vrong values P has this speed 4 times in 1 period

Answer M			Marks	Guidance	
7	(i)	using $F = ma$	M1	must have the right 3 terms; allow sign error / sin for cos for M1	
		$T - 0.2g\cos\theta = 0.2v^2/0.5$ by energy	A1 M1		
		$1/2 \times 0.2u^{2} = 1/2 \times 0.2v^{2} + 0.2g \times 0.5(1 - \cos\theta)$ $T = 5.88 \cos\theta + 0.4u^{2} - 3.92$	A1 A1 [5]	AG with no errors and no gaps in argument	$v^2 = u^2 - 9.8(1 - \cos\theta)$
	(ii)	when $\theta = 180^{\circ}$, $5.88\cos\theta + 0.4u^2 - 3.92 = 0$ $-5.88 + 0.4u^2 - 3.92 = 0$ min u is 4.95 (m s ⁻¹)	M1 A1 A1 [3]	allow inequalities for M1A1 $\frac{7}{2}\sqrt{2}$	4.9497 Not > 4.95
		OR, at top, $mg = \frac{mv^2}{r}$, so $v^2 = 0.5g$ by energy $\frac{1}{2}0.2u^2 = \frac{1}{2}0.2 \times 0.5g + 0.2g$	B1	allow inequalities for B1M1	
		by energy $\frac{1}{2}0.2u^2 = \frac{1}{2}0.2 \times 0.5g + 0.2g$ min <i>u</i> is 4.95 (m s ⁻¹)	M1 A1		
	(iii)	$5.88\cos\theta + 0.4x12.25 - 3.92 = 0$ $\cos\theta = (3.92 - 4.9)/5.88 $	M1 A1 M1 A1 [4]	might see $\theta = 99.6^{\circ}$ or 1.74 radians accept use of their θ $\frac{7}{30}\sqrt{15}$	99.49406°, 1.73824rads 0.903696
		OR use T equation from (i) $0 - 0.2g(-1/6) = 0.2v^2/0.5$ $v = 0.904 \text{ m s}^{-1}$	M1 A1	30 113	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

