

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4730

Mechanics 3

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1	$0.2 = \frac{2\pi}{\Omega} \Rightarrow \omega = 10\pi$	M1	For relevant use of $\frac{2\pi}{2}$
	ω	A1	For correct value 10π
	Hence maximum speed is $0.3 \times 10\pi = 3\pi \approx 9.42 \text{ m s}^{-1}$	M1	For relevant use of $v = a\omega$
		A1√	For correct value 3π or 9.42
	Maximum acc is $0.3 \times (10\pi)^2 = 30\pi^2 \approx 296 \text{ m s}^{-2}$	M1	For relevant use of $a\omega^2$
		A1√ <u>6</u>	For correct value 30π or 296
		6	
3	(i) A and B move off \perp and \parallel resp. to line of centres	M1	For correct directions of motion after impact
	$2mv_B = mu\cos\theta$	A1	For correct momentum equation
	$v_B = eu\cos\theta$	A1	For correct restitution equation
	Hence $e = 0.5$	A1 4	For correct answer 0.5
	(ii) $v_A = u \sin \theta$	B1	For correct equation
	Hence $v_A = v_B \Rightarrow u \sin \theta = 0.5u \cos \theta$	M1	For forming the relevant equation for θ
	So $\theta = \tan^{-1} 0.5 \approx 26.6^{\circ}$	A1 3	For correct value 26.6
		7	
3	$80\ 000v \frac{dv}{dr} = -(27\ 000 + 50v^2)$	M1	For using Newton II to form a DE
	at .	A1	For correct equation including $v \frac{dv}{dx}$
	Hence $x = -\int \frac{1600v}{540 + v^2} dv$	M1	For separation of variables
	$= -800\ln(540 + v^2) + k$	M1	For logarithmic form of integral
		A1√	For correct integration of (their) $\frac{av}{b+cv^2}$
	$v = 90 \text{ when } x = 0 \implies k = 800 \ln 8640$	M1	For use of initial condition to find <i>k</i>
	Hence when $v = 0$, $x = 800 \ln 16$	M1	For evaluation of required distance
			(The previous two M marks can equivalently
	So distance is 2220 m approximately	A1 8	be earned by using definite integration) For correct value 2220
	so distance is 2220 in approximately	8	Tor correct value 2220
4	(i) Greatest tension = $\frac{1320\times35}{25}$ = 1848 N	M1	For use of $\frac{\lambda x}{\lambda}$ at lowest point
-	25		ι
		A1 2	For correct answer 1848
	(ii) (a) $mg \times 60 = \frac{1320}{2 \times 25} (60 - 25)^2$	M1	For use of correct EPE formula $\frac{\lambda x^2}{2l}$
	27.23	A1	For correct unsimplified expression for EPE
	Hence the girl's mass is 55 kg	M1	For use of equation involving EPE and GPE
		A1 4	For correct answer 55
	(b) $55g \times 30 = \frac{1}{2} \times 55v^2 + \frac{1320}{2 \times 25} \times (30 - 25)^2$	M1	For energy equation with KE, GPE and EPE
		A1√	For equation with all terms correct
	So $v^2 = 564$, hence speed is 23.7 m s ⁻¹	A1 3	For correct answer 24.3
		9	

 equiv 2 - term
 ! - term
 ! - term
 ! - term
e term
, for T
n for T
AC
ent)
with all
equiv
0
-

4730 Specimen Paper [Turn over

			1		
7	(i)	$T_{AP} = \frac{196}{0.8} \times (1.5 - 0.8) = 171.5$	M1		For using Hook's law to find either tension
		$T_{BP} = \frac{196}{0.8} \times (2.6 - 1.5 - 0.8) = 73.5$	A1		For both tensions correct
		$T_{AP} - T_{BP} = 98 = 10g$, hence equilibrium	M1		For considering $T_{AP} = mg + T_{BP}$, or equiv
			A1	4	For showing given result correctly
	(ii)	Extension of <i>PA</i> is $1.5 + x - 0.8 = 0.7 + x$	M1		For finding either extension in terms of x
		Hence $T_{AP} = \frac{196}{0.8}(0.7 + x) = 245(0.7 + x)$	A1		For showing one given answer correctly
		and $T_{BP} = \frac{196}{0.8}(1.1 - x - 0.8) = 245(0.3 - x)$	A1	3	For showing the other given answer correctly
	(iii)	$245(0.3-x) + 10g - 245(07.+x) = 10\ddot{x}$	M1		For use of Newton II, at a general position
		Hence $\ddot{x} = -49x$, so the motion is SHM	A1 A1		For a correct equation For showing the given result correctly
	(iv)	$0.2 = 0.25\cos(7t)$	M1		For use of ± 0.2 in SHM equation involving t
		Hence half of time above mid-pt is $t = 0.0919$	A1 A1		For a correct equation for a relevant time For correct value for a relevant time
		Proportion is $\frac{t}{\pi/\omega} = 0.205$	M1		For relating t to period of oscillation
		$\mathcal{H} \cap \mathcal{U}$	A1	5	For correct proportion 0.205
				15	