

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4734

Probability & Statistics 3

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

This mark scheme consists of 4 printed pages.

				
1	Model for call-outs is Poisson	B1		For any implication of Poisson
	Mean is $\frac{1}{5}(6+2)$	M1		For summing two relevant parameters
	=1.6	A1		For correct mean of 1.6
	Probability is 1-0.9212	M1		For relevant use of tables
	= 0.0788	A1	5	For correct answer
			5	
2	Assume $F = E + M_1 + M_2 + + M_{50}$, where	1		(The relation itself may be implied)
	the masses of the 50 matches in a box are			
	independent	B1		For one relevant valid assumption
	the mass of the empty box is independent of the			
	masses of the matches	B1		For another relevant valid assumption
	$20.0 = 12.5 + 50\mu$	M1		For attempting $E(F)$ in terms of μ
	Hence mean mass of a match is 0.15 grams	A1		For correct value 0.15
	$0.4^2 = 0.2^2 + 50\sigma^2$	M1		For attempting $Var(F)$ as a sum
		A1	_	For correct equation
	Hence standard deviation is 0.049 grams	A1	7	For correct value 0.049
			7	
3	(i) $\bar{x} = 25.0055$	B1		For correct sample mean, or equivalent; the
				25 may be taken into account later
	$s^2 = \frac{1}{79} \left(0.2287 - \frac{0.44^2}{80} \right)$	M1		For correct unsimplified expression
	= 0.00286	A1		For correct unbiased estimate
	Interval is $25.0055 \pm 2.576 \sqrt{\frac{0.00286}{20}}$	M1		For calculation of the form $\overline{x} \pm z \sqrt{(s^2/n)}$
	V 80	B1		For relevant use of $z = 2.576$
	Hence $24.99(0) < \mu < 25.02(1)$	A1	6	For correct interval, stated to an appropriate
				degree of accuracy
		+		
	(11) The sample size of 80 is sufficient large for the	M1		For montion of sample size and CLT
	necessary to assume a normal distribution	A1	2	For the correct conclusion and reason
		***	-	Tor the correct conclusion and reason
		<u> </u>	8	
4	(i) $f_e = 100 \times \int_5^{10} 0.1 \mathrm{e}^{-0.1x} \mathrm{d}x$	M1		For attempting to integrate $f(x)$
	$=100[-e^{-0.1x}]_{5}^{10}$	A1		For correct indefinite integral
		M1		For multiplying by total frequency
	$=100(e^{-0.5}-e^{-1})=23.87$	M1		For use of correct limits
		A1	5	For obtaining given answer correctly
	((+		
	(ii) Combining: $\begin{array}{cccc} f_o & 49 & 22 & 20 & 9 \\ f_e & 39.35 & 23.87 & 23.25 & 13.53 \end{array}$	M1		For combining the last two classes
	Test statistic is $\frac{9.65^2}{39.35} + \frac{1.87^2}{23.87} + \frac{3.25^2}{23.25} + \frac{4.53^2}{13.53}$	M1		For correct calculation process
	= 4.484	A1		For correct value 4.48
	This is less than 6.251	M1		For comparison with the correct critical value
	Hence there is a satisfactory fit	A1√	5	For correct conclusion, in terms of the fit
			10	

5	(i)	P(X < a) = P(-a < X < a)	M1		For consideration of two areas, or equiv
		$= \int_{-\infty}^{0} (1+x) dx + \int_{-\infty}^{a} (1-x) dx$	A1		For integrals or equivalent trapezia
		$\int_{-a}^{a} \int_{0}^{a} \int_{$	A 1	3	For showing the given answer correctly
		$-[x + \frac{1}{2}x]_{-a} + [x - \frac{1}{2}x]_{0} - 2u - u$	AI		
	(ii)	$\mathbf{P}(Y \leq y) = \mathbf{P}(X^2 \leq y) = \mathbf{P}(X \leq \sqrt{y}) = 2\sqrt{y} - y$	M1		For expression of $P(X^2 \leq y)$ in terms of y
			A1		For correct expression $2\sqrt{y} - y$
		Hence the pgf of Y is $\frac{d}{dy}(2\sqrt{y}-y) = \frac{1}{\sqrt{y}} - 1$	M1		For differentiation of previous expression
		dy vy	A1	4	For showing the given answer correctly
		$F(Y) = \int_{-1}^{1} v^{\frac{1}{2}} - v dv = \left[\frac{2}{2} v^{\frac{3}{2}} - \frac{1}{2} v^{\frac{1}{2}}\right]_{-1}^{1} = \frac{1}{2}$	M1		For the correct integral in terms of v
	(111)	$L(1) = \int_0^1 y + y dy = \int_0^1 y + \int_0^1 y $	A 1		For correct answer $\frac{1}{2}$
		$\Gamma(\mathbf{Y}^2) = \int_0^0 (x^2 + x^3) dx + \int_0^1 (x^2 - x^3) dx$	MI		For the connect integrals in terms of y
		$E(X^{-}) = \int_{-1}^{-1} (x^{-} + x^{-}) dx + \int_{0}^{0} (x^{-} - x^{-}) dx$	IVI I		For the correct integrals in terms of x
		$= \left[\frac{1}{3}x^3 + \frac{1}{4}x^4\right]_{-1}^{\circ} + \left[\frac{1}{3}x^3 - \frac{1}{4}x^4\right]_{0}^{\circ} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$	A1	4	For the correct answer correctly obtained
	(iv)	$E(\sqrt{Y}) = \int_0^1 y^{\frac{1}{2}} g(y) dy = \int_0^1 (1 - y^{\frac{1}{2}}) dy$	M1		For forming the correct integral
		$=\left[y-\frac{2}{3}y^{\frac{3}{2}}\right]_{0}^{1}=\frac{1}{3}$	A1	2	For the correct answer $\frac{1}{3}$
				13	
6	(i)	H_0 : shoppers' views and age are independent,			
		H_1 : shoppers' views and age are not independent	B1		For stating both hypotheses
		Exp frequencies under H_0 are $\begin{array}{c} 163.56 \\ 306.44 \\ 345.56 \end{array}$	M1		For correct method for expected frequencies
		500.77 575.50	A1		For all four correct
		Test statistic is $\frac{22.94^2}{163.56} + \frac{22.94^2}{184.44} + \frac{22.94^2}{306.44} + \frac{22.94^2}{345.56}$	M1		For correct calculation process, inc Yates
		= 9.31	A1		For correct value of the test statistic
		This is greater than the critical 0.5% value of 7.879	M1	-	For a relevant (1 df) comparison
		Hence there is very strong evidence to reject H_0 and conclude that views about changing to metric	AIV'	7	For correctly justifying the given answer (the final two marks remain available if Yates'
		units are not independent of age			correction is omitted)
	(ii)	$H_0: p_1 = p_2, H_1: p_1 \neq p_2$	B1		For both hypotheses stated
		Under H_0 the sample value of the common			
		proportion is $\frac{187+161}{1000} = 0.348$	B1		For correct value of estimated p
		$\frac{187}{161}$			
		Test statistic is $\frac{470 530}{(1 1)}$	M1		For num $p_1 - p_2$ and denom using attempted
		$\sqrt{0.348 \times 0.652 \times \left(\frac{1}{470} + \frac{1}{530}\right)}$			
					s.d. based on a common estimate of p
		= 3.118	A1 A1		For completely correct expression For correct value of the test statistic
		This is greater than the 0.2% (two-tail) critical	M1		For a relevant comparison using the normal
		value of 3.090 Hence this test supports the conclusion of part (i)	A1./	7	distribution For any relevant comparison or comment
		and the supports are conclusion of part (i)		14	
1					

7 (i)	(a)	$\mathbf{H}_0: \boldsymbol{\mu}_d = 0, \ \mathbf{H}_1: \boldsymbol{\mu}_d \neq 0$	B1		For both hypotheses stated
		$\overline{d} = 4.1667$	B1		For correct mean difference (subtraction can be either way round)
		$s^2 = \frac{486}{11} - \frac{50^2}{11 \times 12} = 25.2424$	M1		For calculation of unbiased variance estimate
		11 11×12	A1		For correct value 25.24
		Test statistic is $\frac{4.1667 - 0}{\sqrt{(25.2424/12)}}$	M1		For correct standardising process
		= 2.873	A1		For correct value of test statistic
		This is greater than the critical value 2.718 Hence there is enough evidence to reject H_0	M1		For a relevant comparison using <i>t</i> tables
		and conclude that there is a difference between the times for the two methods	A1√	8	For correctly stated conclusion in context
	 (b)	Population of differences is normal	B1	1	For correct statement
	(c)	Interval is $4.1667 \pm 2.201 \sqrt{\frac{25.2424}{12}}$	M1		For calculation of the form $\overline{d} \pm t \sqrt{(s^2/n)}$
			B1		For relevant use of $t = 2.201$
		Hence $0.97 < \mu_d < 7.36$	A1	3	For correct interval
(ii)	(a)	Variation in the speed of individual workers is not eliminated, and may be large compared with the difference between the methods that is being tested	B1	1	For any relevant valid statement
			D1		
	(b)	Both samples are from normal populations The population variances are equal	B1 B1	2	For a correct statement about normality For a correct statement about the variances
				15	