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1 (i) Starting from the definition of cosh x  in terms of ex , show that 2cosh 2 2cosh 1x x= − . [2] 

 (ii) Given that cosh 2x k= , where 1k > , express each of cosh x  and sinh x  in terms of k. [4] 
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 The diagram shows the graph of 
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 (i) Find the equations of the asymptotes of the curve. [3] 

 (ii) Prove that the values of y between which there are no points on the curve are 5−  and 3. [4] 
 
 
3 (i) Find the first three terms of the Maclaurin series for ln(2 )x+ . [4] 

 (ii) Write down the first three terms of the series for ln(2 )x− , and hence show that, if x is small, then 
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4 The equation of a curve, in polar coordinates, is 

 2cos2 ( )r θ π θ π= − < . 

 (i) Find the values of θ  which give the directions of the tangents at the pole. [3] 

 One loop of the curve is shown in the diagram. 
 

 (ii) Find the exact value of the area of the region enclosed by the loop. [5] 
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 The diagram shows the curve 
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+
 together with four rectangles of unit width. 

 (i) Explain how the diagram shows that 
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 The curve 
1

2
y

x
=

+
 passes through the top left-hand corner of each of the four rectangles shown. 

 (ii) By considering the rectangles in relation to this curve, write down a second inequality involving 
1 1 1 1
2 3 4 5+ + +  and a definite integral. [2] 

 (iii) By considering a suitable range of integration and corresponding rectangles, show that 
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6 (i) Given that 
1

0
(1 ) dn

nI x x x= −⌠
⌡ √ , prove that, for 1n , 

 1(2 3) 2n nn I nI −+ = . [6] 

 (ii) Hence find the exact value of 2I . [4] 

 
 
7 The curve with equation 
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 has one stationary point for 0x > . 

 (i) Show that the x-coordinate of this stationary point satisfies the equation tanh 1 0x x − = . [2] 

 The positive root of the equation tanh 1 0x x − =  is denoted by α . 

 (ii) Draw a sketch showing (for positive values of x) the graph of tanhy x=  and its asymptote, and the 

graph of 
1

y
x

= .  Explain how you can deduce from your sketch that 1α > . [3] 

 (iii) Use the Newton-Raphson method, taking first approximation 1 1x = , to find further approximations 

2x  and 3x  for α . [5] 

 (iv) By considering the approximate errors in 1x  and 2x , estimate the error in 3x . [3] 

 
 
8 (i) Use the substitution 1

2tant x=  to show that 
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 (ii) Express 
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 (iii) Hence find 
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, expressing your answer in an exact form. [4] 

 
 




