

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4727

Further Pure Mathematics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = x \;,$$

giving *y* in terms of *x* in your answer.

[5]

2 The set $S = \{a, b, c, d\}$ under the binary operation * forms a group G of order 4 with the following operation table.

- (i) Find the order of each element of G. [3]
- (ii) Write down a proper subgroup of G. [1]
- (iii) Is the group G cyclic? Give a reason for your answer. [1]
- (iv) State suitable values for each of a, b, c and d in the case where the operation * is multiplication of complex numbers.
- 3 The planes Π_1 and Π_2 have equations $\mathbf{r.(i-2j+2k)} = 1$ and $\mathbf{r.(2i+2j-k)} = 3$ respectively. Find
 - (i) the acute angle between Π_1 and Π_2 , correct to the nearest degree, [4]
 - (ii) the equation of the line of intersection of Π_1 and Π_2 , in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [4]
- 4 In this question, give your answers exactly in polar form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (i) Express $4((\sqrt{3})-i)$ in polar form. [2]
 - (ii) Find the cube roots of $4((\sqrt{3})-i)$ in polar form. [4]
 - (iii) Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero. [3]
- 5 The lines l_1 and l_2 have equations

$$\frac{x-5}{1} = \frac{y-1}{-1} = \frac{z-5}{-2}$$
 and $\frac{x-1}{-4} = \frac{y-11}{-14} = \frac{z-2}{2}$.

- (i) Find the exact value of the shortest distance between l_1 and l_2 . [5]
- (ii) Find an equation for the plane containing l_1 and parallel to l_2 in the form ax + by + cz = d. [4]

6 The set S consists of all non-singular 2×2 real matrices A such that AQ = QA, where

$$\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (i) Prove that each matrix **A** must be of the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. [4]
- (ii) State clearly the restriction on the value of a such that $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is in S. [1]
- (iii) Prove that S is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.) [5]
- 7 (i) Prove that if $z = e^{i\theta}$, then $z^n + \frac{1}{z^n} = 2\cos n\theta$. [2]
 - (ii) Express $\cos^6 \theta$ in terms of cosines of multiples of θ , and hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \cos^6 \theta \, \mathrm{d}\theta \,. \tag{8}$$

8 (i) Find the value of the constant k such that $y = kx^2e^{-2x}$ is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 2e^{-2x}.$$
 [4]

- (ii) Find the solution of this differential equation for which y = 1 and $\frac{dy}{dx} = 0$ when x = 0. [7]
- (iii) Use the differential equation to determine the value of $\frac{d^2y}{dx^2}$ when x = 0. Hence prove that $0 < y \le 1$ for $x \ge 0$.