OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A particle is moving with simple harmonic motion in a straight line. The period is 0.2 s and the amplitude of the motion is 0.3 m . Find the maximum speed and the maximum acceleration of the particle.

2

A sphere A of mass m, moving on a horizontal surface, collides with another sphere B of mass $2 m$, which is at rest on the surface. The spheres are smooth and uniform, and have equal radius. Immediately before the collision, A has velocity u at an angle θ° to the line of centres of the spheres (see diagram). Immediately after the collision, the spheres move in directions that are perpendicular to each other.
(i) Find the coefficient of restitution between the spheres.
(ii) Given that the spheres have equal speeds after the collision, find θ.

3 An aircraft of mass 80000 kg travelling at $90 \mathrm{~m} \mathrm{~s}^{-1}$ touches down on a straight horizontal runway. It is brought to rest by braking and resistive forces which together are modelled by a horizontal force of magnitude ($27000+50 v^{2}$) newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the aircraft. Find the distance travelled by the aircraft between touching down and coming to rest.

4 For a bungee jump, a girl is joined to a fixed point O of a bridge by an elastic rope of natural length 25 m and modulus of elasticity 1320 N . The girl starts from rest at O and falls vertically. The lowest point reached by the girl is 60 m vertically below O. The girl is modelled as a particle, the rope is assumed to be light, and air resistance is neglected.
(i) Find the greatest tension in the rope during the girl's jump.
(ii) Use energy considerations to find
(a) the mass of the girl,
(b) the speed of the girl when she has fallen half way to the lowest point.

A particle P of mass 0.3 kg is moving in a vertical circle. It is attached to the fixed point O at the centre of the circle by a light inextensible string of length 1.5 m . When the string makes an angle of 40° with the downward vertical, the speed of P is $6.5 \mathrm{~m} \mathrm{~s}^{-1}$ (see diagram). Air resistance may be neglected.
(i) Find the radial and transverse components of the acceleration of P at this instant.

In the subsequent motion, with the string still taut and making an angle θ° with the downward vertical, the speed of P is $v \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Use conservation of energy to show that $v^{2} \approx 19.7+29.4 \cos \theta^{\circ}$.
(iii) Find the tension in the string in terms of θ.
(iv) Find the value of v at the instant when the string becomes slack.

A step-ladder is modelled as two uniform rods $A B$ and $A C$, freely jointed at A. The rods are in equilibrium in a vertical plane with B and C in contact with a rough horizontal surface. The rods have equal lengths; $A B$ has weight 150 N and $A C$ has weight 270 N . The point A is 2.5 m vertically above the surface, and $B C=1.6 \mathrm{~m}$ (see diagram).
(i) Find the horizontal and vertical components of the force acting on $A C$ at A.
(ii) The coefficient of friction has the same value μ at B and at C, and the step-ladder is on the point of slipping. Giving a reason, state whether the equilibrium is limiting at B or at C, and find μ.

Two points A and B lie on a vertical line with A at a distance 2.6 m above B. A particle P of mass 10 kg is joined to A by an elastic string and to B by another elastic string (see diagram). Each string has natural length 0.8 m and modulus of elasticity 196 N . The strings are light and air resistance may be neglected.
(i) Verify that P is in equilibrium when P is vertically below A and the length of the string $P A$ is 1.5 m .

The particle is set in motion along the line $A B$ with both strings remaining taut. The displacement of P below the equilibrium position is denoted by x metres.
(ii) Show that the tension in the string $P A$ is $245(0.7+x)$ newtons, and the tension in the string $P B$ is $245(0.3-x)$ newtons.
(iii) Show that the motion of P is simple harmonic.
(iv) Given that the amplitude of the motion is 0.25 m , find the proportion of time for which P is above the mid-point of $A B$.

